Circuits, Systems, and Signal Processing

, Volume 39, Issue 1, pp 138–153 | Cite as

Backstepping-Based Adaptive Control for Nonlinear Systems with Actuator Failures and Uncertain Parameters

  • Wenhui LiuEmail author
  • Fei Xie


This paper concerns with the adaptive control problem for nonlinearly parameterized systems with actuator faults. First, to deal with the uncertain parameters, backstepping technique and parameter separation method are combined to construct an adaptive control scheme. Additionally, actuator fault with actuator stuck case considered in this work is a challenging issue. In order to handle the actuator failures, a novel adaptive fault-tolerant control method is proposed. Then, applying the designed adaptive fault-tolerant controller to the nonlinearly parameterized systems, the global stability is ensured and all the signals in the nonlinear systems are bounded. Finally, a simulation example is presented to validate the effectiveness of the control method.


Adaptive control Backstepping technique Nonlinear systems Fault-tolerant control 



This work is supported by the National Natural Science Foundation of China (61803208 and 61601228), and the Natural Science Foundation of Jiangsu Province (BK20180726 and BK20161021), Natural Science Research Project of Jiangsu Higher Education Institutions (18KJB120005).


  1. 1.
    M. Chen, G. Tao, Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans. Cybern. 46(8), 1851–1862 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Dwari, L. Parsa, Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF. IEEE Trans. Ind. Electron. 58(2), 476–485 (2011)CrossRefGoogle Scholar
  3. 3.
    T. Hayakawa, H. Ishii, K. Tsumura, Adaptive quantized control for nonlinear uncertain systems. Syst. Control Lett. 58(9), 625–632 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    X. Huang, W. Lin, B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    X. Jia, X. Chen, S. Xu, B. Zhang, Adaptive output feedback control of nonlinear time-delay systems with application to chemical reactor systems. IEEE Trans. Ind. Electron. 64(6), 4792–4799 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Jia, S. Xu, G. Cui, B. Zhang, Q. Ma, Global adaptive regulation of feedforward nonlinear time-delay systems by output feedback. Int. J. Robust Nonlinear Control 27(14), 2451–2472 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Jeong, S. Sul, S. Schulz, Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle. IEEE Trans. Ind. Appl. 41(1), 46–51 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Khalili, X. Zhang, M. Polycarpou, Distributed adaptive fault-tolerant control of uncertain multi-agent systems. Automatica 87, 142–151 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design (Wiley, Hoboken, 1995)zbMATHGoogle Scholar
  10. 10.
    H. Li, H. Gao, P. Shi, X. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Li, Y. Gao, P. Shi, H. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Li, G. Yang, Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults. J. Control Theory Appl. 7(3), 248–256 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Lin, C. Qian, Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique. Syst. Control Lett. 39(5), 353–364 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Trans. Autom. Control 47(5), 757–774 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47(8), 1249–1266 (2002) MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Liu, T. Zhang, X. Tian, Continuous output-feedback finite-time control for a class of second-order nonlinear systems with disturbances. Int. J. Robust Nonlinear Control 26(2), 218–234 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Liu, D.W.C. Ho, P. Shi, Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica 58, 5–14 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Liu, D.W.C. Ho, S. Xu, B. Zhang, Adaptive finite-time stabilization of a class of quantized nonlinearly parameterized systems. Int. J. Robust Nonlinear Control 27(18), 4554–4573 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Mohammadi, M. Tavakoli, H. Marquez, F. Hashemzadeh, Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 21(3), 253–267 (2013)CrossRefGoogle Scholar
  20. 20.
    E. Tian, Z. Wang, L. Zou, D. Yue, Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust Nonlinear Control 29(5), 1484–1498 (2019)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Tong, B. Huo, Y. Li, Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Veldhorst, J. Hwang et al., An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9(12), 981 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Wang, Y. Zhang, An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Trans. Ind. Electron. 65(5), 4227–4236 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Wu, J. Liu, Y. Xiong, L. Wu, Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3022–3033 (2018)MathSciNetGoogle Scholar
  25. 25.
    J. Xia, G. Chen, W. Sun, Extended dissipative analysis of generalized markovian switching neural networks with two delay components. Neurocomputing 260, 275–283 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Xia, J. Zhang, W. Sun, B. Zhang, Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2018)CrossRefGoogle Scholar
  27. 27.
    L. Xie, M. Fu, C. de Souze, H/sub infinity/control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans. Autom. Control 37(8), 1253–1256 (1992)CrossRefGoogle Scholar
  28. 28.
    S. Xu, G. Feng, Y. Zou, J. Huang, Robust controller design of uncertain discrete time-delay systems with input saturation and disturbances. IEEE Trans. Autom. Control 57(10), 2604–2609 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Xu, J. Lam, D. Ho, A new lmi condition for delay-dependent asymptotic stability of delayed Hopfield neural networks. IEEE Trans. Circuits Syst. II Expr. Briefs 53(3), 230–234 (2006)CrossRefGoogle Scholar
  30. 30.
    J. Zhang, J. Xia, W. Sun, G. Zhuang, Z. Wang, Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl. Math. Comput. 338, 207–220 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Zhang, G. Yang, Robust adaptive fault-tolerant control for a class of unknown nonlinear systems. IEEE Trans. Ind. Electron. 64(1), 585–594 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    K. Zhang, B. Jiang, P. Shi, Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 20(1), 192–200 (2012)CrossRefGoogle Scholar
  33. 33.
    K. Zhang, B. Jiang, P. Shi, Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs. IEEE Trans. Cybern. 47(2), 306–314 (2017)Google Scholar
  34. 34.
    K. Zhang, B. Jiang, P. Shi, J. Xu, Analysis and design of robust H\(\infty \) fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems. IEEE Trans. Cybern. 45(7), 1225–1235 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, M. Polycarpou, T. Parisini, Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. Automatica 46, 290–299 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Z. Zhang, S. Xu, H. Shen, Reduced-order observer-based output-feedback tracking control of nonlinear systems with state delay and disturbance. Int. J. Robust Nonlinear Control 20(15), 1723–1738 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Z. Zhang, S. Xu, B. Zhang, Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Control 59(5), 1336–1341 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    X. Zhao, P. Shi, X. Zheng, L. Zhang, Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica 60(2015), 193–200 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Zhou, C. Wen, G. Yang, Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Z. Zuo, J. Zhang, Y. Wang, Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Trans. Ind. Electron. 62(6), 3923–3931 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Automation EngineeringNanjing Normal UniversityNanjingChina

Personalised recommendations