Advertisement

Circuits, Systems, and Signal Processing

, Volume 39, Issue 1, pp 307–323 | Cite as

Signal Reconstruction of Compressed Sensing Based on Alternating Direction Method of Multipliers

  • Yanliang Zhang
  • Xingwang LiEmail author
  • Guoying Zhao
  • Bing Lu
  • Charles C. Cavalcante
Article
  • 122 Downloads

Abstract

The sparse signal reconstruction of compressive sensing can be accomplished by \({l_1}\)-norm minimization, but in many existing algorithms, there are the problems of low success probability and high computational complexity. To overcome these problems, an algorithm based on the alternating direction method of multipliers is proposed. First, using variable splitting techniques, an additional variable is introduced, which is tied to the original variable via an affine constraint. Then, the problem is transformed into a non-constrained optimization problem by means of the augmented Lagrangian multiplier method, where the multipliers can be obtained using the gradient ascent method according to dual optimization theory. The \({l_1}\)-norm minimization can finally be solved by cyclic iteration with concise form, where the solution of the original variable could be obtained by a projection operator, and the auxiliary variable could be solved by a soft threshold operator. Simulation results show that a higher signal reconstruction success probability is obtained when compared to existing methods, while a low computational cost is required.

Keywords

Compressive sensing (CS) Signal reconstruction \({l_1}\)-Norm minimization Alternating direction method of multipliers Dual optimization 

Notes

References

  1. 1.
    R.G. Baraniuk, Compressive Sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  5. 5.
    R.H. Byrd, M.E. Hribar, J. Nocedal, An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    E.J. Candès, Compressive sampling, in Proceedings of the International Congress of Mathematicians, Madrid, Spain (2006)Google Scholar
  7. 7.
    E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward–backward splitting. Multisc. Model. Simul. 4(4), 1168–1200 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.L. Donoho, For most large underdetermined systems of linear equations the minimal \({l_1}\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, West Berlin, 2010)CrossRefGoogle Scholar
  14. 14.
    L. Feng, H. Sun, J. Zhu, Robust image compressive sensing based on half-quadratic function and weighted schatten-p norm. Inf. Sci. 2019(477), 265–280 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Gribonval, Piecewise linear source separation. Proc. SPIE 5207, 297–310 (2003)CrossRefGoogle Scholar
  16. 16.
    J.L. Lin, W.L. Hwang, S.C. Pei, Fast matching pursuit video coding by combining dictionary approximation and atom extraction. IEEE Trans. Circuits Syst. Video Technol. 17(12), 1679–1689 (2007)CrossRefGoogle Scholar
  17. 17.
    S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)CrossRefGoogle Scholar
  18. 18.
    D.M. Malioutov, M. Cetin, A.S. Willsky, Homotopy continuation for sparse signal representation. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 733–736 (2005)zbMATHGoogle Scholar
  19. 19.
    A.G. Nikitin, Y. Karadzhov, Matrix Superpotentials: Lie Theory and Its Applications in Physics (Springer, Japan, 2013), pp. 477–483Google Scholar
  20. 20.
    J.K. Pant, W.S. Lu, A. Antoniou, New Improved algorithms for compressive sensing based on\({l_p}\) norm. IEEE Trans. Circuits Syst. II Express Briefs 61(3), 198–202 (2014)CrossRefGoogle Scholar
  21. 21.
    D.S. Pham, S. Venkatesh, Efficient algorithms for robust recovery of images from compressed data. IEEE Trans. Image Process. 22(12), 4724–4737 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Stoica, Y. Selen, Cyclic minimizers majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Process. Mag. 21(1), 112–114 (2005)CrossRefGoogle Scholar
  23. 23.
    J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J.A. Tropp, A.C. Gilbert, M.J. Strauss, Simultaneous sparse approximation via greedy pursuit. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 721–724 (2005)Google Scholar
  25. 25.
    F. Wen, P. Liu, Y. Liu, Robert C. Qiu, W. Yu, Robust sparse recovery in impulsive noise via \({l_p}\) -\( {l_1}\) optimization. IEEE Trans. Signal Process. 65(1), 105–118 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Wen, L. Pei, Y. Yang, W. Yu, P. Liu, Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans. Comput. Imaging 99, 1–1 (2017)MathSciNetGoogle Scholar
  27. 27.
    Y. Xiao, H. Zhu, S.Y. Wu, Primal and dual alternating direction algorithms for \({l_1}\) - \({l_1}\)-norm minimization problems in compressive sensing. Comput. Optim. Appl. 54(2), 441–459 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Xie, A. Liao, Y. Lei, A new accelerated alternating minimization method for analysis sparse recovery. Signal Process. 145, 167–174 (2018)CrossRefGoogle Scholar
  29. 29.
    Allen Y. Yang, Z. Zhou, A.G. Balasubramanian, S. Shankar Sastry, Y. Ma, Fast \({l_1}\)-minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234–3246 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Yang, Y. Zhang, Alternating direction algorithms for \({l_1}\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Z. Zhang, Y. Xu, J. Yang, X. Li, D. Zhang, A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electrical Information EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.Center for Machine Vision and Signal AnalysisUniversity of OuluOuluFinland
  3. 3.Wireless Telecommunications Research GroupFederal University of Ceará Campus do PiciFortalezaBrazil

Personalised recommendations