Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 12, pp 5448–5466 | Cite as

A 17-to-24 GHz Low-Power Variable-Gain Low-Noise Amplifier in 65-nm CMOS for Phased-Array Receivers

  • Majid Yaghoobi
  • Mohammad YavariEmail author
  • Hassan Ghafoorifard
Article
  • 69 Downloads

Abstract

This paper presents a low-power compact variable-gain low-noise amplifier that operates over the frequency band of 17–24 GHz. A design methodology is proposed to determine the optimal size of transistors to achieve the maximum possible gain for current-steering variable-gain amplifiers (VGAs). Moreover, the effect of gain switching on the input and output return losses of current-steering VGAs is analytically studied. Also, various structures of metal-oxide-metal capacitors are examined to find the optimal structure for high-frequency applications. A proof-of-concept VGA is fabricated in a 65-nm bulk CMOS process, and it is employed in a receiver chain. The designed VGA features about 13.3 dB maximum power gain with 5-bit resolution and an average noise figure of 3 dB. The achieved root-mean-square gain error is about 0.45 dB after the fabrication process. The output 1-dB compression point of the VGA is about − 1 dBm at the center of the frequency band. The VGA consumes about 4.2 mW from a 1-V supply, and excluding the pads, it occupies a silicon area of 0.23 mm2.

Keywords

Beamforming CMOS Current-steering Low-noise variable-gain amplifiers Low power MOM capacitors Mm-wave phased-array receivers Short-range radars 

Notes

Acknowledgements

This work has been financially supported in part by Iran National Science Foundation (INSF).

References

  1. 1.
    R. Aparicio, A. Hajimiri, Capacity limits and matching properties of integrated capacitors. IEEE J. Solid-State Circuits 37(3), 384–393 (2002)CrossRefGoogle Scholar
  2. 2.
    F.D. Baumgratz, H. Li, F. Tavernier, S. Bampi, C.E. Saavedra, A 0.4–3.3 GHz low-noise variable gain amplifier with 35 dB tuning range, 4.9 dB NF, and 40 dBm IIP2. Circuits Syst. Signal Process. 94(1), 9–17 (2018)Google Scholar
  3. 3.
    N.-C. Chen, P.-Y. Chou, H. Graeb, M.P.-H. Lin, High-density MOM capacitor array with novel mortise-tenon structure for low-power SAR ADC, in IEEE Design Automation & Test in Europe Conference & Exhibition (DATE), Lausanne (2017), pp. 1757–1762Google Scholar
  4. 4.
    M.L. Edwards, J.H. Sinsky, A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Tech. 40(12), 2303–2311 (1992)CrossRefGoogle Scholar
  5. 5.
    M. Elkholy, S. Shakib, J. Dunworth, V. Aparin, K. Entesari, A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS. IEEE Microw. Wirel. Compon. Lett. 28(1), 64–66 (2018)CrossRefGoogle Scholar
  6. 6.
    C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, K.-Y. Lin, A 57–64 GHz low-phase-variation variable-gain amplifier, in IEEE MTT-S International Microwave Symposium Digest, Montreal (2012), pp. 1–3Google Scholar
  7. 7.
    S. Lee, J. Park, S. Hong, A Ka-band phase-compensated variable-gain CMOS low-noise amplifier. IEEE Microw. Wirel. Compon. Lett. 29(2), 131–133 (2019)CrossRefGoogle Scholar
  8. 8.
    J. Li, Y.-Z. Xiong, Y. Li, W. Wu, Analysis and optimization of cascode structure in power amplifier for X-band phase array radar application. Circuits Syst. Signal Process. 34(1), 1–20 (2015)CrossRefGoogle Scholar
  9. 9.
    W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, T.-W. Huang, 60-GHz 5-bit phase shifter with integrated VGA phase-error compensation. IEEE Trans. Microw. Theory Tech. 61(3), 1224–1235 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Li, X. Liu, Y. Zhuang, A 12–27 GHz SiGe BiCMOS VGA with phase shift variation compensation. Microelectron. J. 70(12), 97–106 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Niknejad, H. Hashemi, mm-Wave Silicon Technology: 60 GHz and Beyond (Springer, New York, 2008)CrossRefGoogle Scholar
  12. 12.
    B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, NJ, 2011), pp. 305–312Google Scholar
  13. 13.
    J. Shi, A. Sidelnicov, K.W.J. Chew, M.S. Chin, C. Schippel, J.M.M. dos Santos, F. Schlaphof, L. Meinshausen, J.R. Long, D.L. Harame, Evolution and optimization of BEOL MOM capacitors across advanced CMOS nodes, in IEEE European Solid-State Device Research Conference (ESSDERC), (2018), pp. 190–193Google Scholar
  14. 14.
    D.-S. Siao, J.-C. Kao, H. Wang, A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS. IEEE Microw. Wirel. Compon. Lett. 24(7), 457–459 (2014)CrossRefGoogle Scholar
  15. 15.
    J.-H. Tsai, J.-W. Wang, C.-H. Wu, A V-band variable gain amplifier with low phase variation using 90-nm CMOS technology. Microw. Opt. Technol. Lett. 56(8), 1946–1949 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, C.-N Chen, Y.-C. Wu, H. Wang, An E-band variable gain low noise amplifier in 90-nm CMOS process using body-floating and noise reduction techniques, in 13th European Microwave Integrated Circuits Conference (EuMIC), (2018), pp. 277–280Google Scholar
  17. 17.
    M. Yaghoobi, M. Yavari, M. Haghi Kashani, H. Ghafoorifard, S. Mirabbasi, A 55-to-64 GHz low-power small-area LNA in 65-nm CMOS with 3.8 dB average NF and ~ 12.8 dB power gain. IEEE Microw. Wirel. Compon. Lett. 29(2), 128–130 (2019)CrossRefGoogle Scholar
  18. 18.
    H.-C. Yeh, S. Aloui, C.-C. Chiong, H. Wang, A wide gain control range V-band CMOS variable-gain amplifier with built-in linearizer. IEEE Trans. Microw. Theory Tech. 61(2), 902–913 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Yi, D. Zhao, X. You, A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution, in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), (2018), pp. 152–155Google Scholar
  20. 20.
    C.-H. Yu, P.-H. Lo, J.-Y. Lyu, H.-C. Kuo, H.-R. Chuang, Integrated 60-GHz CMOS variable-gain low-noise amplifier and full 360° phase shifter for phased-array RF receiving system, in IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Newport Beach (2014), pp. 59–61Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Integrated Circuits Design Laboratory, Department of Electrical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations