Circuits, Systems, and Signal Processing

, Volume 38, Issue 12, pp 5488–5507 | Cite as

Limit Cycle Synchronization of Nonlinear Systems with Matched and Unmatched Uncertainties Based on Finite-Time Disturbance Observer

  • A. R. Hakimi
  • T. BinazadehEmail author


This paper focuses on the limit cycle control of uncertain nonlinear systems in the presence of both matched and unmatched uncertainties. For this purpose, first, a virtual nonlinear system is constructed which has the desired limit cycle in its phase trajectories. The Lyapunov stability theorem for positive limit sets is utilized to confirm the stability of the created limit cycle in the virtual system. Next, by using a modified nonsingular terminal sliding mode control method, a robust controller is designed to synchronize the trajectories of the actual nonlinear system with the corresponding virtual one in a finite time. It is assumed that the actual system suffers from both matched and unmatched uncertainties and/or unknown external disturbances. A nonlinear terminal sliding surface is designed with the aim of a finite-time disturbance observer to tackle these unknown terms. The finite-time Lyapunov stability theorem is utilized to confirm the stability and robustness of the designed control law. Through simulation results, the finite-time stabilization of the synchronization errors and appropriate performance of the proposed control law are verified.


Limit cycle control Synchronization Sustained oscillations Disturbance observer Terminal sliding mode control Matched and unmatched uncertainties 



  1. 1.
    C. Aguilar-Ibánez, J.C. Martinez, J. de Jesus Rubio, M.S. Suarez-Castanon, Inducing sustained oscillations in feedback-linearizable single-input nonlinear systems. ISA Trans. 54, 117–124 (2015)CrossRefGoogle Scholar
  2. 2.
    B.R. Andrievsky, N.V. Kuznetsov, G.A. Leonov, Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems. J. Comput. Syst. Sci. Int. 56(3), 455–470 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Aracil, F. Gordillo, E. Ponce, Stabilization of oscillations through backstepping in high-dimensional systems. IEEE Trans. Autom. Control 50(5), 705–710 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Asano, M. Yamakita, N. Kamamichi, Z.-W. Luo, A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans. Robot. Automation 20(3), 565–573 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Benmiloud, A. Benalia, Finite-time stabilization of the limit cycle of two-cell DC/DC converter: a hybrid approach. Nonlinear Dyn. 83(1–2), 319–332 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S.P. Bhat, D.S. Bernstein, Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst 17(2), 101–127 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    I. Boiko, Analysis of orbital stability in lure system based on dynamic harmonic balance. J. Frankl. Inst. 354(12), 4826–4837 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Golestani, S. Mobayen, F. Tchier, Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory Appl. 10(14), 1675–1683 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Gritli, N. Khraief, A. Chemori, S. Belghith, Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dyn 89, 1–32 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W.M. Haddad, V. Chellaboina, Nonlinear dynamical systems and control: a Lyapunov-based approach (Princeton University Press, Princeton, 2011)CrossRefGoogle Scholar
  12. 12.
    A.R. Hakimi, T. Binazadeh, Robust generation of limit cycles in nonlinear systems: application on two mechanical systems. J. Comput. Nonlinear Dyn. 12(4), 041013 (2017)CrossRefGoogle Scholar
  13. 13.
    A.R. Hakimi, T. Binazadeh, Inducing sustained oscillations in a class of nonlinear discrete-time systems. J. Vib. Control 24, 1162–1170 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A.R. Hakimi, T. Binazadeh, Generation of stable oscillations in uncertain nonlinear systems with matched and unmatched uncertainties. Int. J. Control 92(1), 163–174 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Jafari, T. Binazadeh, Modified composite nonlinear feedback control for output tracking of nonstep signals in singular systems with actuator saturation. Int. J. Robust Nonlinear Control 28(16), 4855–4899 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Ji, F. Ding, Multiperiodicity and exponential attractivity of neural networks with mixed delays. Circuits Syst. Signal Process. 36(6), 2558–2573 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Kai, Limit-cycle-like control for 2-dimensional discrete-time nonlinear control systems and its application to the Hénon map. Commun. Nonlinear Sci. Numer. Simul. 18(1), 171–183 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    H.K. Khalil, Nonlinear systems, vol. 3 (Prentice Hall, Upper Saddle River, 2002)zbMATHGoogle Scholar
  19. 19.
    S. Li, Y.-P. Tian, Finite-time stability of cascaded time-varying systems. Int. J. Control 80(4), 646–657 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T.-S. Li, D. Wang, G. Feng, S.-C. Tong, A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 915–927 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Li, J. Yang, W.-H. Chen, X. Chen, Disturbance observer-based control: methods and applications (CRC Press, Boca Raton, 2014)Google Scholar
  22. 22.
    H. Li, Y. Wang, D. Yao, R. Lu, A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Liang, L. Zhang, H.R. Karimi, Q. Zhou, Fault estimation for a class of nonlinear semiMarkovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear Control 28(18), 5962–5980 (2018)CrossRefGoogle Scholar
  24. 24.
    B. Novák, J.J. Tyson, Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9(12), 981–991 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Ortega, J.A.L. Perez, P.J. Nicklasson, H.J. Sira-Ramirez, Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications (Springer, Berlin, 2013)Google Scholar
  26. 26.
    R. Zurakowski, A. R. Teel, Enhancing immune response to HIV infection using MPC-based treatment scheduling. in Proceedings of the American Control Conference, vol. 2, pp. 1182–1187 (2003)Google Scholar
  27. 27.
    P. Rani, P. Kokil, H. Kar, L 2L Suppression of limit cycles in interfered digital filters with generalized overflow nonlinearities. Circuits Syst. Signal Process. 36(7), 2727–2741 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Sikder, I. Husain, W. Ouyang, Cogging torque reduction in flux-switching permanent-magnet machines by rotor pole shaping. IEEE Trans. Ind. Appl. 51(5), 3609–3619 (2015)CrossRefGoogle Scholar
  29. 29.
    J.T.M. Van Beek, R. Puers, A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Varigonda, T.T. Georgiou, P. Daoutidis, Numerical solution of the optimal periodic control problem using differential flatness. IEEE Trans. Autom. Control 49(2), 271–275 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, H. Li, J. Sun, W. He, Cooperative adaptive event-triggered control for multi-agent systems with actuator failures. IEEE Trans. Syst. Man Cybern. Syst. (2018).
  32. 32.
    J. Yang, S. Li, J. Su, X. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Yang, S. Li, X. Yu, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Yu, M. Chen, Fault tolerant control for near space vehicles with input saturation using disturbance observer and neural networks. Circuits Syst. Signal Process. 34(7), 2091–2107 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Yu, J. Huang, S. Fei, Sliding mode switching control of manipulators based on disturbance observer. Circuits Syst. Signal Process. 36(6), 2574–2585 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations