Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 12, pp 5549–5575 | Cite as

Two-Dimensional DOA Estimation via Shifted Sparse Arrays with Higher Degrees of Freedom

  • Ahmet M. ElbirEmail author
Article
  • 98 Downloads

Abstract

Sparse antenna arrays provide larger virtual arrays to estimate the direction of arrivals (DOAs) of more sources than the number of physical antennas in the array. While the degrees of freedom (DOF) can be increased by the special structure of the antenna array, a shift in the antenna positions can generate new lags in the difference co-array; hence, more sources can be resolved. In this paper, we propose shifted sparse array structures composed of two overlapping arrays shifted by one lag. It is shown that the shifting property fills the holes in the co-array, which yields larger virtual arrays. We derive stationary and moving array models where overlapping sparse arrays can be realized. The proposed shifting property is applied to coprime, nested and sparse linear arrays, and we show that the proposed technique guaranteed to increase the DOF. Using the proposed sparse array structures, we also propose a 2-D DOA estimation algorithm by utilizing the cross-covariance matrix of an L-shaped sparse array. The performance of the proposed approach is evaluated through numerical simulations, and we show that it can resolve more sources than the conventional sparse arrays with the same number of physical antennas, providing less computational complexity.

Keywords

Antenna arrays Sparse arrays DOA estimation Coprime arrays Nested arrays Array shifting 

Notes

References

  1. 1.
    Y.Y. Dong, C.X. Dong, Y.T. Zhu, G.Q. Zhao, S.Y. Liu, Two-dimensional DOA estimation for L-shaped array with nested subarrays without pair matching. IET Signal Process. 10(9), 1112–1117 (2016)CrossRefGoogle Scholar
  2. 2.
    Y.Y. Dong, C. Dong, W. Liu, H. Chen, G. Zhao, 2-D DOA estimation for l-shaped array with array aperture and snapshots extension techniques. IEEE Signal Process. Lett. 24(4), 495–499 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.Y. Dong, C. Dong, J. Xu, G. Zhao, Computationally efficient 2-D DOA estimation for L-shaped array with automatic pairing. IEEE Antennas Wirel. Propag. Lett. 15, 1669–1672 (2016)CrossRefGoogle Scholar
  4. 4.
    A.M. Elbir, Direction finding in the presence of direction-dependent mutual coupling. IEEE Antennas Wirel. Propag. Lett. 16, 1541–1544 (2017)CrossRefGoogle Scholar
  5. 5.
    A.M. Elbir, Coprime arrays with enhanced degrees of freedom. Anadolu Univ. J. Sci. Technol. 19, 235–241 (2018)Google Scholar
  6. 6.
    B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39(3), 273–284 (1991)CrossRefGoogle Scholar
  7. 7.
    K. Han, P. Yang, A. Nehorai, Calibrating nested sensor arrays with model errors. IEEE Trans. Antennas Propag. 63(11), 4739–4748 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Huang, B. Liao, X. Wang, X. Guo, J. Huang, A new nested array configuration with increased degrees of freedom. IEEE Access 6, 1490–1497 (2018)CrossRefGoogle Scholar
  9. 9.
    Z. Huang, J. Xu, L. Liu, T. Long, Z. Wang, SAR ground moving targets relocation via co-prime arrays. In IEEE Radar Conference (RadarConf), pp. 0792–0796 (2017)Google Scholar
  10. 10.
    C.G. Khatri, C. Radhakrishna Rao, Solutions to some functional equations and their applications to characterization of probability distributions. Sankhy Indian J. Stat. Ser. A (1961–2002) 30(2), 167–180 (1968)MathSciNetzbMATHGoogle Scholar
  11. 11.
    H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)CrossRefGoogle Scholar
  12. 12.
    Z. Lin, Y. Zeng, G. Bi, J. Yeo, Signal processing for large bandwidth and long duration waveform SAR. Multidimens. Syst. Signal Process. 14(1), 119–137 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual couplingpart II: high-order extensions. IEEE Trans. Signal Process. 64(16), 4203–4217 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray music. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)CrossRefGoogle Scholar
  15. 15.
    C.L. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling; part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C.-L. Liu, P.P. Vaidyanathan, Cramer–Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digit. Signal Process. 61, 43–61 (2017). (Special Issue on Coprime Sampling and Arrays)CrossRefGoogle Scholar
  17. 17.
    Q. Liu, X. Yi, L. Jin, W. Chen, Two dimensional direction of arrival estimation for co-prime L-shaped array using sparse reconstruction. In 8th International Congress on Image and Signal Processing (CISP), pp. 1499–1503 (2015)Google Scholar
  18. 18.
    A. Moffet, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)CrossRefGoogle Scholar
  19. 19.
    P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm. In Digital Signal Processing and Signal Processing Education Meeting, pp. 289–294 (2011)Google Scholar
  21. 21.
    G. Qin, M. Amin, Y.D. Zhang, Analysis of coprime arrays on moving platforms. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)Google Scholar
  22. 22.
    S. Qin, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Qin, Y.D. Zhang, M.G. Amin, F. Gini, Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE J. Sel. Top. Signal Process. 11(2), 321–335 (2017)CrossRefGoogle Scholar
  24. 24.
    W. Roberts, L. Xu, J. Li, P. Stoica, Sparse antenna array design for mimo active sensing applications. IEEE Trans. Antennas Propag. 59(3), 846–858 (2011)CrossRefGoogle Scholar
  25. 25.
    R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)CrossRefGoogle Scholar
  26. 26.
    J. Shi, G. Hu, X. Zhang, F. Sun, H. Zhou, Sparsity-based two-dimensional DOA estimation for coprime array: from sumdifference coarray viewpoint. IEEE Trans. Signal Process. 65(21), 5591–5604 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Stoica, R.L. Moses, Spectral Analysis of Signals (Prentice Hall, Upper Saddle River, 2005)Google Scholar
  28. 28.
    N. Tayem, K. Majeed, A.A. Hussain, Two-dimensional DOA estimation using cross-correlation matrix with L-shaped array. IEEE Antennas Wirel. Propag. Lett. 15, 1077–1080 (2016)CrossRefGoogle Scholar
  29. 29.
    T. Engin Tuncer, B. Friedlander, Classical and Modern Direction-of-Arrival Estimation (Academic Press, Cambridge, 2009)Google Scholar
  30. 30.
    P.P. Vaidyanathan, P. Pal, Sparse sensing with coprime arrays. In Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pp. 1405–1409 (2010)Google Scholar
  31. 31.
    P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    P.P. Vaidyanathan, P. Pal, Theory of sparse coprime sensing in multiple dimensions. IEEE Trans. Signal Process. 59(8), 3592–3608 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Q. Wu, F. Sun, P. Lan, G. Ding, X. Zhang, Two-dimensional direction-of-arrival estimation for co-prime planar arrays: a partial spectral search approach. IEEE Sens. J. 16(14), 5660–5670 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, Z. Zheng, H. Yang, J. Yang, Y. Ge, A novel 2-D DOA estimation method via sparse L-shaped array. In 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1865–1869 (2016)Google Scholar
  35. 35.
    Z. Yang, L. Xie, On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans. Signal Process. 63(12), 3139–3153 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Yardibi, J. Li, P. Stoica, M. Xue, A.B. Baggeroer, Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 46(1), 425–443 (2010)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, W. Zheng, W. Chen, Z. Shi, Two-dimensional DOA estimation for generalized coprime planar arrays: a fast-convergence trilinear decomposition approach. Multidimens. Syst. Signal Process. 30, 239–256 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Y. Zhang, B.P. Ng, MUSIC-like DOA estimation without estimating the number of sources. IEEE Trans. Signal Process. 58(3), 1668–1676 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    W. Zheng, X. Zhang, H. Zhai, Generalized coprime planar array geometry for 2-D DOA estimation. IEEE Commun. Lett. 21(5), 1075–1078 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, Y.D. Zhang, Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 66(22), 5956–5971 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    M.D. Zoltowski, S.D. Silverstein, C.P. Mathews, Beamspace root-music for minimum redundancy linear arrays. IEEE Trans. Signal Process. 41(7), 2502–2507 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringDuzce UniversityDuzceTurkey

Personalised recommendations