Advertisement

A Split-Based Digital Background Calibration of Pipelined Analog-to-Digital Converters by Cubic Spline Interpolation Filtering

  • Ehsan ZiaEmail author
  • Ebrahim Farshidi
  • Abdolnabi Kosarian
Article
  • 14 Downloads

Abstract

In this paper, a digital background calibration technique for pipelined analog-to-digital converter (ADC) based on the concept of split architecture is proposed to address finite dc gain and nonlinearity of the residue amplifier. In the proposed method, the pipelined ADC divided into two channels where each channel included the first stage followed by an ideal backend ADC. A 1.5 bit per stage is chosen for the first stage of each channel where a pseudorandom sequence is injected before one of the channels. The difference between the digital outputs of two channels is used to drive an interpolation filter to correct the mentioned errors. Since splines modeled high nonlinearity with weakly nonlinear functions, it selected for interpolation filtering which results in low computational overhead and fast convergence time. Behavioral simulations of a 12-bit 100 MS/s pipelined ADC show that the convergence time of the algorithm is approximately 4 × 104 clock cycles and the signal-to-noise and distortion ratio and the spurious free dynamic range improved from 32 dB/35 dB to 70 dB/75 dB.

Keywords

Pipelined ADC Background calibration Split Interpolation filter Spline LMS 

Notes

References

  1. 1.
    H. Adel, M.M. Louerat, M. Sabut, Fast split background calibration for pipelined ADCs enabled by slope mismatch averaging technique. Electron. Lett. 48, 318–320 (2012).  https://doi.org/10.1049/el.2012.0357 CrossRefGoogle Scholar
  2. 2.
    I. Ahmed, D.A. Johns, An 11-bit 45 MS/s pipelined ADC with rapid calibration of DAC errors in a multibit pipeline stage. IEEE J. Solid-State Circuits 43, 1626–1637 (2008).  https://doi.org/10.1109/JSSC.2008.923724 CrossRefGoogle Scholar
  3. 3.
    C. DeBoor, A Practical Guide to Splines (Springer, New York, 1978).  https://doi.org/10.2307/2006241 CrossRefGoogle Scholar
  4. 4.
    P. Gholami, M. Yavari, Digital background calibration with histogram of decision points in pipelined ADCs. IEEE Trans. Circuits Syst. II Exp. Briefs 65, 16–20 (2017).  https://doi.org/10.1109/TCSII.2017.2660765 CrossRefGoogle Scholar
  5. 5.
    J.K.R. Kim, B. Murmann, A 12-b, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration. IEEE J. Solid-State Circuits 47, 2141–2151 (2012).  https://doi.org/10.1109/JSSC.2012.2194191 CrossRefGoogle Scholar
  6. 6.
    G.S. Liu, C.H. Wei, A new variable fractional sample delay filter with nonlinear interpolation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 39, 123–126 (1992).  https://doi.org/10.1109/82.205818 CrossRefGoogle Scholar
  7. 7.
    H. Mafi, M. Yargholi, M. Yavari, Statistics-based digital background calibration of residue amplifier nonlinearity in pipelined ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 1–13 (2018).  https://doi.org/10.1109/TCSI.2018.2846647 MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.A. Montazerolghaem, T. Moosazadeh, M. Yavari, A pre-determined LMS digital background calibration technique for pipelined ADCs. IEEE Trans. Circuits Syst. II Exp. Briefs 62, 841–845 (2015).  https://doi.org/10.1109/TCSII.2015.2435071 CrossRefGoogle Scholar
  9. 9.
    M.A. Montazerolghaem, T. Moosazadeh, M. Yavari, A single channel split ADC structure for digital background calibration in pipelined ADCs. IEEE Trans. Very Large Scale Integr. Syst. 25, 1563–1567 (2016).  https://doi.org/10.1109/TVLSI.2016.2641259 CrossRefGoogle Scholar
  10. 10.
    U.K. Moon, B.S. Song, Background digital calibration techniques for pipelined ADCs. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44, 102–109 (1997).  https://doi.org/10.1109/82.554434 CrossRefGoogle Scholar
  11. 11.
    A. Panigada, I. Galton, Digital background correction of harmonic distortion in pipelined ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 1885–1895 (2006).  https://doi.org/10.1109/TCSI.2006.880034 CrossRefGoogle Scholar
  12. 12.
    B. Peng, H. Li, S.C. Lee, P. Lin, Y. Chiu, A virtual-ADC digital background calibration technique for multistage A/D conversion. IEEE Trans. Circuits Syst. II Exp. Briefs 57, 853–857 (2010).  https://doi.org/10.1109/TCSII.2010.2082850 CrossRefGoogle Scholar
  13. 13.
    B.D. Sahoo, B. Razavi, A 10-b 1-GHz 33-mW CMOS ADC. IEEE J. Solid-State Circuits 48, 1442–1452 (2013).  https://doi.org/10.1109/JSSC.2013.2252518 CrossRefGoogle Scholar
  14. 14.
    B.D. Sahoo, B. Razavi, A 12-bit 200-MHz CMOS ADC. IEEE J. Solid-State Circuits 44, 2366–2380 (2009).  https://doi.org/10.1109/JSSC.2009.2024809 CrossRefGoogle Scholar
  15. 15.
    D.L. Shen, T.C. Lee, A linear-approximation technique for digitally-calibrated pipelined A/D converters. in IEEE International Symposium on Circuits and Systems (IEEE, 2005), pp. 1382–1385.  https://doi.org/10.1109/ISCAS.2005.1464854
  16. 16.
    W. Shen, An Introduction to Numerical Computation (World Scientific, New Jersey, 2015).  https://doi.org/10.1142/9844 CrossRefGoogle Scholar
  17. 17.
    Y.S. Shu, B.S. Song, A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering. IEEE J. Solid-State Circuits 43, 342–350 (2007).  https://doi.org/10.1109/JSSC.2007.914260 CrossRefGoogle Scholar
  18. 18.
    E. Siragusa, I. Galton, Gain error correction technique for pipelined analogue-to-digital converters. Electron. Lett. 36, 1 (2000).  https://doi.org/10.1049/el:20000501 CrossRefGoogle Scholar
  19. 19.
    J. Sun, J. Wu, Digital background calibration of pipeline ADC based on correlation. Int. J. Electron. 105, 528–539 (2017).  https://doi.org/10.1080/00207217.2017.1378379 Google Scholar
  20. 20.
    B. Zeinali, T. Moosazadeh, M. Yavari, A. Rodriguez-Vazquez, Equalization-based digital background calibration technique for pipelined ADCs. IEEE Trans. Very Large Scale Integr. Syst. 22, 322–333 (2013).  https://doi.org/10.1109/TVLSI.2013.2242208 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations