Advertisement

Noise Robust Method for Analytically Solvable Chaotic Signal Reconstruction

  • Lidong LiuEmail author
  • Yanan Wang
  • Yi Li
  • Xiaoran Feng
  • Huansheng Song
  • Zhili He
  • Chen Guo
Article
  • 9 Downloads

Abstract

A new chaotic signal reconstruction method for analytically solvable chaotic systems (ASCS) under strong noise condition is proposed in this paper, which solves the problem of unsatisfactory reconstruction performance under strong noise condition. In the proposed method, firstly, binary symbols of ASCS are obtained under strong noise condition by integrating the observed signal over a specific interval of every binary symbol period and comparing integration results with a zero value threshold. Then, the relationship between the original signal and another ASCS is derived analytically based on the obtained binary symbol sequence. According to the derived relationship, the original signal can be reconstructed by the output of another ASCS which is driven by the obtained binary symbol sequence reversed in time. Theoretically, the proposed method can reconstruct signals under strong noise condition with small error since the integration result of additive white Gaussian noise in every integration interval approaches zero. Finally, the proposed method is demonstrated with numerical simulations which show the original chaotic signal can be reconstructed with small error even when the signal-to-noise ratio is \(-30\) dB, and thus the proposed method outperforms conventional methods.

Keywords

Chaos Signal reconstruction Analytically solvable chaotic systems Noise resistance 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61701043, 41874140, 41704107), the Fundamental Research Funds for the Central Universities of China (Grant Nos. 300102248103, 310824173702), Shaanxi Province Science and Technology Programme (2018GY-019).

References

  1. 1.
    C. Bai, H.P. Ren, C. Grebogi, M.S. Baptista, Chaos-based underwater communication with arbitrary transducers and bandwidth. Appl. Sci. 8(2), 162 (2018)CrossRefGoogle Scholar
  2. 2.
    J.P. Bailey, A.N. Beal, R.N. Dean et al., High-frequency reverse-time chaos generation using digital chaotic maps. Electron. Lett. 50(23), 1683–1685 (2014)CrossRefGoogle Scholar
  3. 3.
    J.N. Blakely, D.W. Hahs, N.J. Corron, Communication waveform properties of an exact folded-band chaotic oscillator. Phys. D Nonlinear Phenom. 263(2013), 99–106 (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Buscarino, L. Fortuna, M. Frasca, Experimental robust synchronization of hyperchaotic circuits. Phys. D Nonlinear Phenom. 238(19), 1917–922 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    T.L. Carroll, Chaotic system for self-synchronizing doppler measurement. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 013109 (2005)CrossRefGoogle Scholar
  6. 6.
    T.L. Carroll, Communication with unstable basis functions. Chaos Solitons Fractals 104(2017), 766–771 (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    T.L. Carroll, Noise-resistant chaotic synchronization. Phys. Rev. E 64(1), 015201 (2001)CrossRefGoogle Scholar
  8. 8.
    N.J. Corron, J.N. Blakely, A matched filter for communicating with chaos. AIP Conf. Proc. Am. Inst. Phys. 1339, 25 (2010)zbMATHGoogle Scholar
  9. 9.
    N.J. Corron, J.N. Blakely, Chaos in optimal communication waveforms. Proc. R. Soc. A. 471(2180), 20150222 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N.J. Corron, J.N. Blakely, Exact folded-band chaotic oscillator. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023113 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N.J. Corron, J.N. Blakely, M.T. Stahl, A matched filter for chaos. Chaos Interdiscip. J. Nonlinear Sci. 20(2), 023123 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    N.J. Corron, M.T. Stahl, C.R. Harrison, J.N. Blakely, Acoustic detection and ranging using solvable chaos. Chaos Interdiscip. J. Nonlinear Sci. 23(2), 023119 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    N.J. Corron, R.M. Cooper, J.N. Blakely, Analytically solvable chaotic oscillator based on a first-order filter. Chaos: An Interdisciplinary J. Nonlinear Sci. 26(2), 023104 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    N.J. Corron, S.T. Hayes, S.D. Pethel, J.N. Blakely, Chaos without nonlinear dynamics. Phys. Rev. Lett. 97(2), 024101 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Hu, J. Duan, Z. Chen, H. Li, J. Xie, H. Chen, Detecting impact signal in mechanical fault diagnosis under chaotic background. Mech. Syst. Signal Process. 99(15), 702–710 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Hu, Y. Zhang, H. Li, M. Yang, W. Xia, J. Li, Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Phys. Sin. 64, 22 (2015)Google Scholar
  17. 17.
    J. Hu, Y. Zhang, M. Yang, H. Li, W. Xia, J. Li, Weak harmonic signal detection method from strong chaotic interference based on convex optimization. Nonlinear Dyn. 84(3), 1469–1477 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    X. Jiang, D. Liu, M. Cheng, M.F. Cheng et al., High-frequency reverse-time chaos generation using an optical matched filter. Opt. Lett. 41(6), 1157–1160 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Kaddoum, H.V. Tran, L. Kong, A. Micheal, Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems. IEEE Trans. Commun. 65(1), 431–443 (2017)Google Scholar
  20. 20.
    L. Liu, C. Guo, J. Li, H. Xu, J. Zhang, B. Wang, Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors 16(11), 1866 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Liu, Y. Ren, X.M. Shan et al., A linear feedback synchronization theorem for a class of chaotic system. Chaos Solitons Fractals 13(4), 723–730 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    L.D. Liu, J.F. Hu, Z.S. He, C. Han, H. Li, J. Li, Chaotic signal reconstruction with application to noise radar system. Eur. J. Adv. Signal Process. 1(2), 1–8 (2011)Google Scholar
  23. 23.
    L.D. Liu, Y. Li, Z.L. Zhang et al., High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator. Electron. Lett. 54, 1384–1385 (2018).  https://doi.org/10.1049/el.2018.6054 CrossRefGoogle Scholar
  24. 24.
    L.D. Liu, Y.N. Wang, L. Hou, X.R. Feng, Easy encoding and low bit-error-rate chaos communication system based on reverse-time chaotic oscillator. IET Signal Process. 11(7), 869–876 (2017)CrossRefGoogle Scholar
  25. 25.
    M.S. Milosavljevic, J.N. Blakely, A.N. Beal, N.J. Corron, Analytic solutions throughout a period doubling route to chaos. Phys. Rev. E 95, 062223 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B.A.M. Owens, M.T. Stahl, N.J. Corron et al., Exactly solvable chaos in an electromechanical oscillator. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033109 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 94(8), 821–825 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    H.P. Ren, C. Bai, J. Liu et al., Experimental validation of wireless communication with chaos. Chaos Interdiscip. J. Nonlinear Sci. 26(8), 083117 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H.P. Ren, C. Bai, Q.J. Kong, M.S. Baptistab, C. Grebogib, A chaotic spread spectrum system for underwater acoustic communication. Phys. A Stat. Mech. Appl. 478(15), 77–92 (2017)CrossRefGoogle Scholar
  30. 30.
    H.P. Ren, M.S. Baptista, C. Grebogi, Wireless communication with chaos. Phys. Rev. Lett. 110(18), 184101 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Senouci, A. Boukabou, K. Busawon et al., Robust chaotic communication based on indirect coupling synchronization. Circuits Syst. Signal Process. 34(2), 393–418 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Tayebi, S. Berber, A. Swain, Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits Syst. Signal Process. 35(12), 1–22 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    J. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93(20), 204103 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Yang, G.P. Jiang, J. Duan, Phase-separated DCSK: a simple delay-component-free solution for chaotic communications. IEEE Trans. Circuits Syst. II Express Briefs. 61(12), 967–971 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Yang, Y. Chen, F. Zhu, Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing 167, 587–595 (2015)CrossRefGoogle Scholar
  36. 36.
    J.L. Yao, C. Li, H.P. Ren, C. Grebogi, Chaos-based wireless communication resisting multipath effects. Phys. Rev. E 96, 032226 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Zeng, X. Zhang, L. Chen et al., Deterministic construction of toeplitzed structurally chaotic matrix for compressed sensing. Circuits Syst. Signal Process. 34(3), 797–813 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Zheng, J. Hu, P. Wu, L. Liu, Z. He, Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control. Nonlinear Dyn. 67(2), 1515–1523 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringChang’an UniversityXi’anChina

Personalised recommendations