Advertisement

Multiple Input Single Output Phase Retrieval

  • Yina GuoEmail author
  • Tao Wang
  • Jianyu Li
  • Anhong Wang
  • Wenwu Wang
Article
  • 45 Downloads

Abstract

In this paper, we consider the problem of recovering the phase information of multiple sources from a mixed phaseless short-time Fourier transform measurement, which is called multiple input single output (MISO) phase retrieval problem. It is an inherently ill-posed problem due to the lack of the phase and mixing information, and the existing phase retrieval algorithms are not explicitly designed for this case. To address the MISO phase retrieval problem, a least-squares method coupled with an independent component analysis (ICA) algorithm is proposed for the case of sufficiently long window length. When these conditions are not met, an integrated algorithm is presented, which combines a gradient descent algorithm by minimizing a non-convex loss function with an ICA algorithm. Experimental evaluation has been conducted to show that under appropriate conditions the proposed algorithms can explicitly recover the signals, the phases of the signals, and the mixing matrix. In addition, the algorithm is robust to noise.

Keywords

Multiple input single output (MISO) Phase retrieval Short-time Fourier transform (STFT) Non-convex optimization Independent component analysis (ICA) 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61301250, the Key Research and Development Project of Shanxi Province under Grant 201803D421035, the Outstanding young academic leaders of Higher Learning Institutions of Shanxi under Grant [2015]3 and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi under Grant 201705D131025. The work was conducted during Guo’s visit at the University of Surrey.

References

  1. 1.
    A. Ahmed, B. Recht, J. Romberg, Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Al-Tmeme, W. Woo, S. Dlay, B. Gao, Single channel informed signal separation using artificial-stereophonic mixtures and exemplar-guided matrix factor deconvolution. Int. J. Adapt. Control Signal Process. 32(9), 1259–1281 (2018)MathSciNetzbMATHGoogle Scholar
  3. 3.
    B. Baykal, Blind channel estimation via combining autocorrelation and blind phase estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 51(6), 1125–1131 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Bendory, Y.C. Eldar, N. Boumal, Non-convex phase retrieval from STFT measurements. IEEE Trans. Inf. Theory 64(1), 467–484 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E.J. Candes, Y.C. Eldar, T. Strohmer, V. Voroninski, Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. Dashen, S.M. Flatté, W.H. Munk, K.M. Watson, F. Zachariasen, Sound Transmission Through a Fluctuating Ocean (Cambridge University Press, Cambridge, 2010)Google Scholar
  7. 7.
    Y.C. Eldar, P. Sidorenko, D.G. Mixon, S. Barel, O. Cohen, Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Process. Lett. 22(5), 638–642 (2015)CrossRefGoogle Scholar
  8. 8.
    F.M. Epple, S. Ehn, P. Thibault, T. Koehler, G. Potdevin, J. Herzen, D. Pennicard, H. Graafsma, P.B. Noel, F. Pfeiffer, Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector. IEEE Trans. Med. Imaging 34(3), 816–823 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Fienup, J. Dainty, Phase retrieval and image reconstruction for astronomy. Image Recovery Theory Appl. 7, 231–275 (1987)Google Scholar
  10. 10.
    J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)CrossRefGoogle Scholar
  11. 11.
    J.R. Fienup, Phase-retrieval algorithms for a complicated optical system. Appl. Opt. 32(10), 1737–1746 (1993)CrossRefGoogle Scholar
  12. 12.
    R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35(2), 237–246 (1972)Google Scholar
  13. 13.
    T. Gerkmann, M. Krawczyk Becker, J. Le Roux, Phase processing for single-channel speech enhancement: history and recent advances. IEEE Signal Process. Mag. 32(2), 55–66 (2015)CrossRefGoogle Scholar
  14. 14.
    D.W. Griffin, J.S. Lim, Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)CrossRefGoogle Scholar
  15. 15.
    Y. Guo, S. Huang, Y. Li, Single-mixture source separation using dimensionality reduction of ensemble empirical mode decomposition and independent component analysis. Circuits Syst. Signal Process. 31(6), 2047–2060 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Guo, S. Huang, Y. Li, G.R. Naik, Edge effect elimination in single-mixture blind source separation. Circuits Syst. Signal Process. 32(5), 2317–2334 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Guo, A. Wang, W. Wang, Multi-source phase retrieval from multi-channel phaseless STFT measurements. Signal Process. 144, 36–40 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Huang, Y.C. Eldar, N.D. Sidiropoulos, Phase retrieval from 1 D Fourier measurements: convexity, uniqueness, and algorithms. IEEE Trans. Signal Process. 64(23), 6105–6117 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Hyunjin, L. Junseok, K. Bonhwa, M. Cheong, S. Iksu, K. Hanseok, H. Wooyoung, Underwater radiated signal analysis in the modulation spectrogram domain. IEICE Trans. Fundam. Electron. 98(8), 1751–1759 (2015)Google Scholar
  20. 20.
    A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2004)Google Scholar
  21. 21.
    K. Jaganathan, Y.C, Eldar, B. Hassibi, Phase retrieval: An Overview of Recent Developments. arXiv preprint arXiv:1510.07713 (2015)
  22. 22.
    K. Jaganathan, Y. Eldar, B. Hassibi, STFT phase retrieval: uniqueness guarantees and recovery algorithms. IEEE J. Sel. Top. Signal Process. 10(4), 770–781 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Krawczyk, T. Gerkmann, STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 1931–1940 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Kulmer, P. Mowlaee, Phase estimation in single channel speech enhancement using phase decomposition. IEEE Signal Process. Lett. 22(5), 598–602 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Liu, Y. Li, X. Hu, L. Liu, D. Hao, A novel thresholding method in removing noises of electrocardiogram based on wavelet transform. J. Inf. Comput. Sci. 10(15), 5031–5041 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Lyon, The discrete Fourier transform, Part 6: cross-correlation. J. Object Technol. 9(2), 17–22 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348(6234), 530–535 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Novey, T. Adali, ICA by maximization of nongaussianity using complex functions, in IEEE Workshop on Machine Learning and Signal Processing (IEEE, 2005), pp. 21–26Google Scholar
  29. 29.
    M. Novey, T. Adali, Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)CrossRefGoogle Scholar
  30. 30.
    P. Parathai, W. Woo, S. Dlay, B. Gao, Single-channel blind separation using L 1-sparse complex non-negative matrix factorization for acoustic signals. The J. Acoust. Soc. Am. 137(1), EL124–EL129 (2015)CrossRefGoogle Scholar
  31. 31.
    L.K. Patton, B.D. Rigling, Phase retrieval for radar waveform optimization. IEEE Trans. Aerosp. Electron. Syst. 48(4), 3287–3302 (2012)CrossRefGoogle Scholar
  32. 32.
    L.R. Rabiner, B.H. Juang, Fundamentals of Speech Recognition (PTR Prentice Hall, Upper Saddle River, 1993)Google Scholar
  33. 33.
    B. Rajaei, E.W. Tramel, S. Gigan, F. Krzakala, L. Daudet, Intensity-Only Optical Compressive Imaging Using a Multiply Scattering Material and a Double Phase Retrieval Approach. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (IEEE, 2016), pp. 4054–4058Google Scholar
  34. 34.
    Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Tengtrairat, B. Gao, W. Woo, S. Dlay, Single-channel blind separation using pseudo-stereo mixture and complex 2-d histogram. IEEE Trans. Neural Netw. 24(11), 1722–1735 (2013)CrossRefGoogle Scholar
  36. 36.
    N. Tengtrairat, W. Woo, S. Dlay, B. Gao, Online noisy single-channel source separation using adaptive spectrum amplitude estimator and masking. IEEE Trans. Signal Process. 64(7), 1881–1895 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    W. Woo, B. Gao, A. Bouridane, B. Ling, C. Chin, Unsupervised learning for monaural source separation using maximization-minimization algorithm with time-frequency deconvolution. Sensors (Basel, Switzerland) 18(5) (2018)Google Scholar
  38. 38.
    J. Xie, W. Lin, H. Li, K. Guo, B. Jin, Y. Zhang, D. Liu, A New Algorithm for Improving Deblurring Effects and Addressing Spatially-Variant Blur Problems for Image Motion Deblurring. In: Proceedings 4th International congress on image and signal processing (IEEE, 2011), vol 2, pp. 651–655Google Scholar
  39. 39.
    C. Zhang, W. Lin, W. Li, B. Zhou, J. Xie, J. Li, Improved image deblurring based on salient-region segmentation. Signal Process. Image Commun. 28(9), 1171–1186 (2013).  https://doi.org/10.1016/j.image.2013.07.004 CrossRefGoogle Scholar
  40. 40.
    F. Zhang, G. Pedrini, W. Osten, Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75(4), 043805 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Information EngineeringTaiyuan University of Science and TechnologyTaiyuanChina
  2. 2.Centre for Vision, Speech and Signal ProcessingUniversity of SurreyGuildfordUK

Personalised recommendations