Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2387–2401 | Cite as

A Robust Maximum Likelihood Algorithm for Blind Equalization of Communication Systems Impaired by Impulsive Noise

  • Jin LiEmail author
  • Da-Zheng Feng
  • Bingbing Li
  • Weike Nie
Short Paper
  • 60 Downloads

Abstract

To improve the performance of the blind equalizer (BE) in impulsive noise environments, a robust maximum likelihood algorithm (RMLA) is proposed for the communication systems using quadrature amplitude modulation signals. A novel robust maximum likelihood cost function based on the constant modulus algorithm is constructed to effectively suppress the influence of impulsive noise and ensure the computational stability. Theoretical analysis is presented to illustrate the robustness and good computational stability of the proposed algorithm under the impulsive noise ambient. Moreover, it is proved that the weight vector of the proposed BE can converge stably by LaSalle invariance principle. Simulation results are provided to further confirm the robustness and stability of the proposed RMLA.

Keywords

α-Stable distribution Blind equalization Robust maximum likelihood algorithm Inter-symbol interference Constant modulus algorithm 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61801363, 61271299 and 61501348, the Natural Science Foundation of Shaanxi Province under Grant 2017JM6039, the Basic Scientific Research Foundation of Xidian University under Grants 8002/20101166309 and 8002/20103166309.

References

  1. 1.
    Y. Cai, R.C. de Lamare, M. Zhao, J. Zhong, Low-complexity variable forgetting factor mechanism for blind adaptive constrained constant modulus algorithms. IEEE Trans. Signal Process. 60(8), 3988–4002 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Chitre, J. Potter, O.S. Heng, Underwater acoustic channel characterization for medium-range shallow water communications, in Proceedings of MTTS/IEEE OCEANS’04 Conference, vol 1 (2004), pp. 9–12Google Scholar
  3. 3.
    Z. Ding, Y. Li, Blind Equalization and Identification (Marcel Dekker Inc., New York, 2001)CrossRefGoogle Scholar
  4. 4.
    L.M. Garth, A dynamic convergence analysis of blind equalization algorithms. IEEE Trans. Commun. 49, 624–634 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    D. Godard, Self-recovering equalization and carrier tracking in two dimensional data communications systems. IEEE Trans. Commun. 28(11), 1867–1875 (1980)CrossRefGoogle Scholar
  6. 6.
    S. Haykin, Blind Deconvolution (Prentice Hall, Upper Saddle River, 1994)Google Scholar
  7. 7.
    G.E. Hinton, S.J. Nowlan, The bootstrap Widrow-Hoff rule as a cluster-formation algorithm. Neural Comput. 2(3), 355–362 (1990)CrossRefGoogle Scholar
  8. 8.
    J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D.L. Jones, A normalized constant-modulus algorithm, in Conference record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, vol. 1 (1995), pp. 694–697Google Scholar
  10. 10.
    M. Kawamoto, K. Kohno, Y. Inouye, Robust eigenvector algorithms for blind deconvolution of MIMO linear systems. Circuits Syst. Signal Process. 26(4), 473–494 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    K. Kuo, T. Chen, C.C. Fung, C. Lee, Second-order statistics based prefilter-blind equalization for MIMO-OFDM, in 2008 14th Asia-Pacific Conference on Communications (2008), pp. 1–5Google Scholar
  12. 12.
    J.P. LaSalle, The Stability of Dynamical Systems (SIAM, Philadelphia, 1976)CrossRefzbMATHGoogle Scholar
  13. 13.
    S. Li, L.-M. Song, T.-S. Qiu, Steady-state and tracking analysis of fractional lower-order constant modulus algorithm. Circuits Syst. Signal Process. 30, 1275–1288 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    J. Li, D.Z. Feng, W.X. Zheng, Space-time semi-blind equalizer for dispersive QAM MIMO system based on modified Newton method. IEEE Trans. Wirel. Commun. 13(6), 3244–3256 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Liang, D. Wang, L. Su, B. Chen, H. Chen, H. So, Robust MIMO radar target localization via nonconvex optimization. Signal Process. 122, 33–38 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Lim, Mixture filtering approaches to blind equalization based on estimation of time-varying and multi-path channels. J. Commun. Netw. 18(1), 8–18 (2017)Google Scholar
  17. 17.
    W. Liu, P. Pokharel, J. Principe, Correntropy: properties and application in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5296 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Mahmood, M. Chitre, M.A. Armand, On single-carrier communication in additive white symmetric alpha-stable noise. IEEE Trans. Commun. 62(10), 3584–3599 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Naveed, I.M. Qureshi, T.A. Cheema, M.A.S. Choudhry, Blind channel equalization using second-order statistics: a necessary and sufficient condition. Circuits Syst. Signal Process. 25(4), 511–523 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    C.L. Nikias, M. Shao, Signal Processing with Alpha-Stable Distribution and Application (Wiley, New York, 1995)Google Scholar
  21. 21.
    T. Qiu, H. Tang, Capture properties of the generalized CMA in alpha-stable noise environment, in The 7th International Conference Signal Processing, Beijing, China (2005), pp. 439–442Google Scholar
  22. 22.
    M. Richharia, Satellite Communication Systems: Design Principles. Tech. Eng. (Macmillan, Basingstoke, 1999)CrossRefGoogle Scholar
  23. 23.
    M. Rupi, P. Tsakalides, E.D. Re, C.L. Nikias, Constant modulus blind equalization based on fractional lower-order statistics. Signal Process. 84(8), 881–894 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Y. Sato, A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Trans. Commun. 23(6), 679–682 (1975)CrossRefGoogle Scholar
  25. 25.
    V. Savaux, F. Bader, J. Palicot, OFDM/OQAM blind equalization using CMA approach. IEEE Trans. Signal Process. 64(9), 2324–2333 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    G. Scarano, A. Petroni, M. Biagi, R. Cusani, Second-order statistics driven LMS blind fractionally spaced channel equalization. IEEE Signal Process. Lett. 24(2), 161–165 (2017)Google Scholar
  27. 27.
    L. Sen, Q. Tian Shuang, Z. Dai Feng, Adaptive blind equalization for MIMO systems under α-stable noise environment. IEEE Commun. Lett. 13(8), 609–611 (2009)CrossRefGoogle Scholar
  28. 28.
    O. Shalvi, E. Weinstein, Super-exponential methods for blind equalization. IEEE Trans. Inf. Theory 39(2), 505–519 (1993)CrossRefzbMATHGoogle Scholar
  29. 29.
    M. Shao, C.L. Nikias, Signal processing with fractional lower order moment stable processes and their applications. IEEE Proc. 81(7), 986–1010 (1993)CrossRefGoogle Scholar
  30. 30.
    L. Tong, G. Xu, T. Kailath, Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Trans. Inf. Theory 40, 340–349 (1994)CrossRefGoogle Scholar
  31. 31.
    J. Treichler, B. Agee, A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–471 (1983)CrossRefGoogle Scholar
  32. 32.
    S. Unawong, S. Miyamoto, N. Morinaga, A novel receiver design for DS-CDMA systems under impulsive radio noise environments. IEICE Trans. Commun. E82-B, 936–943 (1999)Google Scholar
  33. 33.
    B. Wang, Y. Zhang, W. Wang, Robust group compressive sensing for DOA estimation with partially distorted observations. EURASIP J. Adv. Signal Process. 2016, 128 (2016)CrossRefGoogle Scholar
  34. 34.
    B. Wang, Y. Zhang, W. Wang, Robust DOA estimation in the presence of miscalibrated sensors. IEEE Signal Process. Lett. 24(7), 1073–1077 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Yuan, J. Chao, T. Lin, Effect of channel noise on blind equalization and carrier phase recovery of CMA and MMA. IEEE Trans. Commun. 60(11), 3274–3285 (2012)CrossRefGoogle Scholar
  36. 36.
    B. Zhang, J. Yu, W. Kuo, Fast convergence on blind and semi-blind channel estimation for MIMO–OFDM systems. Circuits Syst. Signal Process. 34(6), 1993–2013 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anPeople’s Republic of China
  2. 2.National Laboratory of Radar Signal ProcessingXidian UniversityXi’anPeople’s Republic of China
  3. 3.School of Information Science and TechnologyNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations