Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2335–2350 | Cite as

Improved Results on Robust Energy-to-Peak Filtering for Continuous-Time Uncertain Linear Systems

  • Quancheng ChengEmail author
  • Baoying Cui
Short Paper
  • 54 Downloads

Abstract

This paper addresses the problem of energy-to-peak filtering for continuous-time systems with polytope uncertainties. The aim is to design a new robust filtering that guarantees the filtering error system is asymptotically stable with a prescribed energy-to-peak performance. Parameter-dependent Lyapunov approach and Finsler’s lemma are used to achieve this aim. Sufficient condition for the existence of energy-to-peak filtering is presented in terms of linear matrix inequalities. The proposed method is less conservative than the earlier results by adding more slack matrices. A simulation is given to show the effectiveness of the proposed method.

Keywords

Energy-to-peak filtering Polytope uncertainties Finsler’s lemma LMIs 

Notes

Acknowledgements

The authors would like to thank the Editors and the anonymous reviewers for their constructive comments which have improved the presentation of this paper. This work was supported in part by the Research Project of the Liaoning Mechatronics College, China (Grant No.2017010).

References

  1. 1.
    S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics (SIAM, Philadelphia, 1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    S. Das, J.M.F. Moura, Distributed Kalman filtering with dynamic observations consensus. IEEE Trans. Signal Process 63(17), 4458–4473 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C.E. de Souza, A. Trofino, K.A. Barbosa, Mode-independent \({H}_\infty \) filters for Markovian jump linear systems. IEEE Trans. Autom. Control 51(11), 1837–1841 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Z. Duan, J. Zhan, C. Zhang, E. Mosca, Robust \({H}_2\) and \({H}_\infty \) filtering for uncertain linear systems. Automatica 42(11), 1919–1926 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    H. Gao, J. Lam, C. Wang, Robust energy-to-peak filter design for stochastic time-delay systems. Syst. Control Lett. 55(2), 101–111 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Gao, X. Meng, T. Chen, A parameter-dependent approach to robust \({H}_\infty \) filtering for time-delay systems. IEEE Trans. Autom. Control 53(10), 2420–2425 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H. Gao, C. Wang, Robust energy-to-peak filtering with improved LMI representations. IEE Proc.-Vis. Image Signal Process 150(2), 82–89 (2003)CrossRefGoogle Scholar
  8. 8.
    K.M. Grigoriadis, J.T. Watson, Reduced-order \({H}_\infty \) and \({L}_2-{L}_\infty \) filtering via linear matrix inequalities. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1326–1338 (1997)CrossRefGoogle Scholar
  9. 9.
    S. He, Energy-to-peak filtering for T-S fuzzy systems with Markovian jumping: the finite-time case. Neurocomputing 168, 348–355 (2015)CrossRefGoogle Scholar
  10. 10.
    S. He, F. Liu, Robust peak-to-peak filtering for Markov jump systems. Signal Process 90(2), 513–522 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    K. Hu, J. Yuan, Improved robust \({H}_\infty \) filtering for uncertain discrete-time switched systems. IET Control Theory Appl. 3(3), 315–324 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R.E. Kalman, A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  13. 13.
    F. Li, P. Shi, C.C. Lim, L. Wu, Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. 26(1), 131–141 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Liu, F. Sun, Z. Sun, Reduced-order filtering with energy-to-peak performance for discrete-time Markovian jumping systems. IMA J. Math. Control Inf. 21(2), 143–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    X. Liu, H. Xi, Stochastic stability for uncertain neutral Markovian jump systems with nonlinear perturbations. J. Dyn. Control Syst. 21(2), 285–305 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    X. Meng, H. Gao, S. Mou, A new parameter-dependent approach to robust energy-to-peak filter design. Circuits Syst. Signal Process 26(4), 451–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Mohammadian, H.R. Momeni, H.S. Karimi, I. Shafikhani, M. Tahmasebi, An LPV based robust peak-to-peak state estimation for genetic regulatory networks with time varying delay. Neurocomputing 160, 261–273 (2015)CrossRefGoogle Scholar
  18. 18.
    R.M. Palhares, P.L.D. Peres, Robust filtering with guaranteed energy-to-peak performance-an LMI approach. Automatica 36(6), 851–858 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. Shen, Z.G. Wu, J.H. Park, Finite-time energy-to-peak filtering for Markov jump repeated scalar non-linear systems with packet dropouts. IET Control Theory Appl. 8(16), 1617–1624 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Song, Z. Wang, H. Shen, F. Li, B. Chen, J. Lu, A unified method to energy-to-peak filter design for networked Markov switched singular systems over a finite-time interval. J. Franklin Inst. 354(17), 7899–7916 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    X. Song, H. Zhang, H. Liu, \(l_2-l_\infty \) filtering design for piecewise discrete-time linear systems. Circuits Syst. Signal Process. 28(6), 883–898 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    D.A. Wilson, Convolution and Hankel operator norms for linear systems. IEEE Trans. Autom. Control 34(1), 94–97 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Y. Wu, R. Lu, Event-based control for network systems via integral quadratic constraints. IEEE Trans. Circuits Syst. I Regul. Papers 65(4), 1386–1394 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wu, Y., Lu, R.: Output synchronization and \(L_2\)-gain analysis for network systems. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2754544
  25. 25.
    Y. Wu, R. Lu, P. Shi, H. Su, Z.G. Wu, Sampled-data synchronization of complex networks with partial couplings and T-S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2018)CrossRefGoogle Scholar
  26. 26.
    T. Wu, F. Li, C. Yang, W. Gui, Event-based fault detection filtering for complex networked jump systems. IEEE/ASME Trans. Mechatron. 23(2), 497–505 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Wei, X. Peng, J. Qiu, S. Jia, \({H}_\infty \) filtering for two-dimensional continuous-time Markovian jump systems with deficient transition descriptions. Neurocomputing 167, 406–417 (2015)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, H. Qiao, \({H}_\infty \) reliable control of uncertain linear state delayed systems. J. Dyn. Control Syst. 10(1), 55–76 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    L. Wu, P. Shi, H. Gao, C. Wang, A new approach to robust \({H}_\infty \) filtering for uncertain systems with both discrete and distributed delays. Circuits Syst. Signal Process 26(2), 229–248 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J. Xia, S. Xu, B. Song, Delay-dependent \(l_2-l_\infty \) filter design for stochastic time-delay systems. Syst. Control Lett. 56(9–10), 579–587 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Yang, C., Yu, Z., Wang, P., Yu, Z, Karimi, H.R.,Feng, Z.: Robust \(l_2-l_\infty \) filtering for discrete-time delaysystems. Math. Probl. Eng. 2013, ArticleID 408941(2013)Google Scholar
  32. 32.
    G. Zong, L. Hou, Y. Wu, Robust \(l_2\)-\(l_\infty \) guaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays. Circuits Syst. Signal Process 30(1), 17–33 (2011)CrossRefzbMATHGoogle Scholar
  33. 33.
    Y. Zhou, J. Li, Energy-to-peak filtering for singular systems: the discrete-time case. IET Control Theory Appl. 2(9), 773–781 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    B. Zhu, J. Ma, S. Li, A novel \({L}_2-{L}_\infty \) filtering strategy for two kinds of network-based linear time-invariant systems. Circuits Syst. Signal Process 36(8), 3098–3113 (2017)CrossRefzbMATHGoogle Scholar
  35. 35.
    H. Zhang, A.S. Mehr, Y. Shi, Improved robust energy-to-peak filtering for uncertain linear systems. Signal Process 90(9), 2667–2675 (2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    H. Zhang, Y. Shi, Parameter-dependent \({H}_\infty \) filtering for linear time-varying systems. ASME J. Dyn. Syst. Meas. Control 135(2), 021006-1-7 (2013)Google Scholar
  37. 37.
    H. Zhang, Y. Shi, J. Wang, On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22(1), 212–222 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Liaoning Mechatronics CollegeDandongPeople’s Republic of China

Personalised recommendations