Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2187–2226 | Cite as

A New Method for Designing of Stable Digital IIR Filter Using Hybrid Method

  • N. Agrawal
  • A. KumarEmail author
  • Varun Bajaj
Article
  • 160 Downloads

Abstract

In this paper, a new technique for designing of a stable digital infinite impulse response filter, with improved performance in passband and stopband regions using quantum particle swarm optimization (QPSO) and artificial bee colony (ABC) algorithm, is explored in frequency domain. In the proposed method, QPSO technique is modified with exploiting the novelty of search and replacement mechanism of scout bee from ABC algorithm. For this purpose, a new design problem is constructed as a nonlinear minimization of mean square error between the designed and desired filter responses in passband, stopband, and transition band simultaneously, allowing permissible ripples in passband and stopband. Efficiency of the proposed technique is measured by several attributes like passband error, stopband error, total squared error (SE), maximum stopband attenuation, maximum passband error \( \left( {e_{pb}^{\hbox{max} } } \right) \), passband ripple, and maximum phase deviation in passband. Experimental results evidence that a significant reduction is achieved in sum of the SE in passband and stopband from 12 to 54%, and the performance is not degraded due to quantization and truncation process. However, computation time in term of CPU time is increased from 0.77 to 4.1%, along with 2.62–7.43% hike in number of function evaluation, when compared to QPSO. A comparative study reveals that the proposed method yields better fidelity parameter as compared other evolutionary algorithms such as gravitational search algorithm, genetic algorithm, and variants of PSO. The proposed technique is also suitable for higher filter taps.

Keywords

Infinite impulse response (IIR) Quantum particle swarm optimization (QPSO) Particle swarm optimization (PSO) Artificial bee colony (ABC) Modified MSE Stability Lattice Quantization error 

References

  1. 1.
    N. Agrawal, A. Kumar, V. Bajaj, Design of digital IIR filter with low quantization error using hybrid optimization technique. Soft. Comput. 22(9), 2253–2971 (2017)Google Scholar
  2. 2.
    M.K. Ahirwal, A. Kumar, G.K. Singh, Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm. Digit. Signal Process. 25, 164–172 (2014)Google Scholar
  3. 3.
    M.K. Ahirwal, A. Kumar, G.K. Singh, EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(6), 1491–1504 (2013)Google Scholar
  4. 4.
    A. Antoniou, Digital Filters: Analysis, Design, and Applications (McGraw-Hil, New York, 2000)Google Scholar
  5. 5.
    S. Chen, B.L. Luk, Adaptive simulated annealing for optimization in signal processing applications. Sig. Process. 79(1), 117–128 (1999)zbMATHGoogle Scholar
  6. 6.
    A. Chottera, G. Jullien, A linear programming approach to recursive digital filter design with linear phase. IEEE Trans. Circuits Syst. 29(3), 139–149 (1982)Google Scholar
  7. 7.
    M. Dorigo, V. Maniezzo, A. Colorni, M. Dorigo, Positive Feedback as a Search Strategy. Technical Report 91–016 (1991), p. 1–20 Google Scholar
  8. 8.
    D.M. Etter, M. Hicks, K. Cho, Recursive adaptive filter design using an adaptive genetic algorithm, in IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP (1982), p. 635–638Google Scholar
  9. 9.
    L. Fang, Z. Zhiguang, An improved QPSO algorithm and its application in the high-dimensional complex problems. Chemom. Intell. Lab. Syst. 132, 82–90 (2014)Google Scholar
  10. 10.
    C.Y.F. Ho, B.W.K. Ling, Y.Q. Liu, P.K.S. Tam, K.L. Teo, Optimal design of magnitude responses of rational infinite impulse response filters. IEEE Trans. Signal Process. 54(10), 4039–4046 (2006)zbMATHGoogle Scholar
  11. 11.
    A. Jiang, H.K. Kwan, Minimax design of IIR digital filters using iterative SOCP. IEEE Trans. Circuits Syst. I Regul. Pap. 57(6), 1326–1337 (2010)MathSciNetGoogle Scholar
  12. 12.
    N. Karaboga, F. Latifoglu, Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony—ABC-algorithm. Digit. Signal Process. 23(3), 1051–1058 (2013)MathSciNetGoogle Scholar
  13. 13.
    D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    N. Karaboga, A new design method based on artificial bee colony algorithm for digital IIR filters. J. Frankl. Inst. 346(4), 328–348 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    N. Karaboga, B. Cetinkaya, Design of digital FIR filters using differential evolution algorithm. Circuits Syst. Signal Process. 25(5), 649–660 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    N. Karaboga, Digital IIR filter design using differential evolution algorithm. EURASIP J. Adv. Signal Process. 2005(8), 1269–1276 (2005)zbMATHGoogle Scholar
  17. 17.
    N. Karaboğa, B. Çetinkaya, Efficient design of fixed point digital FIR filters by using differential evolution algorithm, in Lecture Notes in Computer Science, ed. by J.C. Alberto, P.F. Sandoval (Springer, Berlin, 2005), p. 812–819Google Scholar
  18. 18.
    A. Kalinli, N. Karaboga, A new method for adaptive IIR filter design based on tabu search algorithm. AEU Int. J. Electron. Commun. 59(2), 111–117 (2005)zbMATHGoogle Scholar
  19. 19.
    N. Karaboga, A. Kalinli, D. Karaboga, Designing digital IIR filters using ant colony optimisation algorithm. Eng. Appl. Artif. Intell. 17(3), 301–309 (2004)zbMATHGoogle Scholar
  20. 20.
    N. Karaboga, B. Cetinkaya, Performance comparison of genetic and differential evolution algorithms for digital FIR filter design, in Lecture Notes in Computer Science, ed. by T. Yakhno (Springer, Berlin, 2004), p. 482–488Google Scholar
  21. 21.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE International Conference on Neural Networks (1995), p. 1942–1948Google Scholar
  22. 22.
    P. Lagos-Eulogio, J.C. Seck-Tuoh-Mora, N. Hernandez-Romero, J. Medina-Marin, A new design method for adaptive IIR system identification using hybrid CPSO and DE. Nonlinear Dyn. 88(4), 2371–2389 (2017)Google Scholar
  23. 23.
    M.C. Lang, Least-squares design of IIR filters with prescribed magnitude and phase responses and a pole radius constraint. Signal Process. IEEE Trans. 48(11), 3109–3121 (2000)Google Scholar
  24. 24.
    W.S. Lu, Design of stable minimax IIR digital filters using semidefinite programming, in IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353) (2000), p. 355–358Google Scholar
  25. 25.
    W.S. Lu, Design of stable IIR digital filters with equiripple passbands and peak-constrained least-squares stopbands. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(11), 1421–1426 (1999)Google Scholar
  26. 26.
    W.S. Lu, S.C. Pei, C.C. Tseng, A weighted least-squares method for the design of stable 1-D and 2-D IIR digital filters. IEEE Trans. Signal Process. 46(1), 1–10 (1998)Google Scholar
  27. 27.
    S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of fractional-order digital differentiator using flower pollination algorithm. J. Circuits Syst. Comput. 27(8), 1850129–1850135 (2017)Google Scholar
  28. 28.
    A. Ouadi, H. Bentarzi, A. Recioui, Optimal multiobjective design of digital filters using spiral optimization technique. Springerplus 2, 461 (2013)Google Scholar
  29. 29.
    S.T. Pan, Evolutionary computation on programmable robust IIR filter pole-placement design. IEEE Trans. Instrum. Meas. 60(4), 1469–1479 (2011)Google Scholar
  30. 30.
    S.M. Rafi, A. Kumar, G.K. Singh, An improved particle swarm optimization method for multirate filter bank design. J. Frankl. Inst. 350(4), 757–769 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Gravitation search algorithm: application to the optimal IIR filter design. J. King Saud Univ. Eng. Sci. 26(1), 69–81 (2014)Google Scholar
  32. 32.
    S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, An efficient craziness based particle swarm optimization technique for optimal IIR filter design, in Transactions on Computational Science, ed. by M.L. Gavrilova, C.J.K. Tan, A. Abraham (Springer, Berlin, 2013), pp. 230–252Google Scholar
  33. 33.
    S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Optimal IIR filter design using novel particle swarm optimization technique. Int. J. Circuits Syst. Signal Process. 6(2), 152–162 (2012)Google Scholar
  34. 34.
    S.K. Saha, S. Sarkar, R. Kar, D. Mandal, S. P. Ghoshal, Digital stable IIR low pass filter optimization using particle swarm optimization with improved inertia weight, in Ninth International Conference on Computer Science and Software Engineering, JCSSE (2012), p. 147–152Google Scholar
  35. 35.
    A. Sarangi, S. Kumar, S. Kumari, S. Prasada, B. Ketan, Swarm intelligence based techniques for digital filter design. Appl. Soft Comput. J. 25, 530–534 (2014)Google Scholar
  36. 36.
    I. Sharma, A. Kumar, G.K. Singh, Adjustable window based design of multiplier-less cosine modulated filter bank using swarm optimization algorithms. AEU Int. J. Electron. Commun. 70(1), 85–94 (2016)Google Scholar
  37. 37.
    C. Sheng, L.L. Bing, Digital IIR filter design using particle swarm optimisation. Int. J. Modell. Identif. Control 9(4), 327–335 (2010)Google Scholar
  38. 38.
    Y. Shi, R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Conference on Computational Intelligence Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (1998), p. 69–73Google Scholar
  39. 39.
    D.S. Sidhu, J.S. Dhillon, D. Kaur, Hybrid heuristic search method for design of digital IIR filter with conflicting objectives. Soft. Comput. 21(12), 3461–3476 (2017)zbMATHGoogle Scholar
  40. 40.
    J. Sun, X. Wu, V. Palade, W. Fang, C.H. Lai, W. Xu, Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf. Sci. (Ny) 193, 81–103 (2012)MathSciNetGoogle Scholar
  41. 41.
    J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in Congress on Evolutionary Computation,. CEC2004 (2004), p. 325–331Google Scholar
  42. 42.
    K.S. Tang, K.F. Man, S. Kwong, Z.F. Liu, Design and optimization of IIR filter structure using hierarchical genetic algorithms. IEEE Trans. Ind. Electron. 45(3), 481–487 (1998)Google Scholar
  43. 43.
    C.W. Tsai, C.H. Huang, C.L. Lin, Structure-specified IIR filter and control design using real structured genetic algorithm. Appl. Soft Comput. 9(4), 1285–1295 (2009)Google Scholar
  44. 44.
    J.T. Tsai, J.H. Chou, T.K. Liu, Optimal design of digital IIR filters by using hybrid taguchi genetic algorithm. IEEE Trans. Ind. Electron. 53(3), 867–879 (2006)Google Scholar
  45. 45.
    Y. Wang, B. Li, Y. Chen, Digital IIR filter design using multi-objective optimization evolutionary algorithm. Appl. Soft Comput. 11(2), 1851–1857 (2011)Google Scholar
  46. 46.
    F. Wei, S. Jun, X. Wenbo, Design IIR digital filters using quantum-behaved particle swarm optimization, in International Conference on Natural Computation Advances in Natural Computing (2006), p. 637–640Google Scholar
  47. 47.
    M. Xi, J. Sun, W. Xu, An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 205(2), 751–759 (2008)zbMATHGoogle Scholar
  48. 48.
    L. Xue, Z. Rongchun, W. Qing, Optimizing the design of IIR filter via genetic algorithm, in International Conference on Neural Networks and Signal Processing (2003), p. 476–479Google Scholar
  49. 49.
    X.S. Yang, Flower pollination algorithm for global optimization, in Unconventional Computation and Natural Computation (2012), pp. 240–250Google Scholar
  50. 50.
    Y. Yu, Y. Xinjie, Cooperative coevolutionary genetic algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 54(3), 1311–1318 (2007)Google Scholar
  51. 51.
    G. Zhang, W. Jin, F. Jin, Multi-criterion satisfactory optimization method for designing IIR digital filters, in International Conference on Communication Technology (2003), p. 1484–1490Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Discipline of Electronics and Communication EngineeringPDPM Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations