Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 2369–2379 | Cite as

Compressive Sensing Inspired Multivariate Median

  • Ljubiša StankovićEmail author
  • Miloš Daković
Short Paper
  • 46 Downloads

Abstract

A new form of the multivariate median is introduced. It is defined as a point in the multidimensional space whose sum of distances from a set of multidimensional hyperplanes is minimal. This median can be used to formulate and solve the problem of sparse signal reconstruction. Application of the proposed multivariate median is illustrated on examples.

Keywords

Compressive sensing Sparse signals Median 

References

  1. 1.
    G.R. Arce, J.L. Parades, Recursive weighted median filters admitting negative weights and their optimization. IEEE Trans. Signal Process. 48(3), 768–779 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Astola, P. Haavisto, Y. Neuvo, Vector median filters. Proc. IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  3. 3.
    R. Chelouaha, P. Siarry, Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. Eur. J. Oper. Res. 148(2), 335–348 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    I. Djurović, L. Stanković, J.F. Böhme, Robust L-estimation based forms of signal transforms and time-frequency representations. IEEE Trans. Signal Process. 51(7), 1753–1761 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D.L. Donoho, M. Gasko, Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Stat. 20(4), 1803–1827 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. Hu, K. Wu, P.P. Shum, N.I. Zheludev, C. Soci, All-optical implementation of the ant colony optimization algorithm. Sci. Reports (2016).  https://doi.org/10.1038/srep26283 Google Scholar
  7. 7.
    P.J. Huber, E.M. Ronchetti, Robust statistics, 2nd edn. (Wiley, Hoboken, 2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    V. Katkovnik, Robust M-periodogram. IEEE Trans. Signal Process. 46, 3104–3109 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983).  https://doi.org/10.1126/science.220.4598.671 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Larson, S.M. Wild, A batch, derivative-free algorithm for finding multiple local minima. Optim. Eng. 17(1), 205–228 (2016).  https://doi.org/10.1007/s11081-015-9289-7 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V.V. Lukin, S.K. Abramov, V.V. Abramova, J.T. Astola, K.O. Egiazarian, DCT-based denoising in multichannel imaging with refrence. Telecommun. Radio Eng. 75(13), 1167–1191 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Neumaier, Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13(1), 271–369 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Pršić, N. Nedić, V. Stojanović, A nature inspired optimal control of pneumatic-driven parallel robot platform. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(1), 59–71 (2017)CrossRefGoogle Scholar
  14. 14.
    A. A. Roenko, V. V. Lukin, and I. Djurović, An overview of the adaptive robust DFT, EURASIP J Advances Signal Process., Special issue robust processing of nonstationary signals, 2010, (Article ID 595071), 17 pages, (2010)Google Scholar
  15. 15.
    J.C. Spall, Introduction to stochastic search and optimization (Wiley, Hoboken, 2005). (ISBN 0-471-33052-3) Google Scholar
  16. 16.
    L. Stanković, M. Daković, On a gradient-based algorithm for sparse signal reconstruction in the signal/measurements domain. Math. Probl. Eng. 2016, 1–11 (2016). (Article ID 6212674) MathSciNetzbMATHGoogle Scholar
  17. 17.
    L. Stanković, M. Daković, S. Vujović, Reconstruction of sparse signals in impulsive disturbance environments. Circuits Syst. Signal Process. 36(2), 767–794 (2017)CrossRefzbMATHGoogle Scholar
  18. 18.
    L. Stanković, D. Mandić, M. Daković, M. Brajović, Time-frequency decomposition of multivariate multicomponent signals. Signal Process. 142, 468–479 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Stojanović, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process. 33(1), 97–113 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    V. Stojanovic, N. Nedic, A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. J.Optim. Theory Appl. 168(1), 332–347 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V. Stojanović, N. Nedić, Robust identification of OE model with constrained output using optimal input design. J. Franklin Inst. 353(2), 576–593 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Y. Vardi , C.H. Zhang The multivariate L1-median and associated data depth. in Proceedings of the national academy of sciences of the United States (PNAS)Google Scholar
  23. 23.
    M. Welk Multivariate median filters and partial differential equations (March 2016). arXiv:1509.08082v2

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MontenegroPodgoricaMontenegro

Personalised recommendations