Circuits, Systems, and Signal Processing

, Volume 38, Issue 5, pp 1942–1961 | Cite as

Extended Reciprocal Convex Techniques on Synchronization in Time-Delay Neutral Lur’e Systems

  • Tao LiEmail author
  • Shaobo Shen
  • Xiaoling Tang
  • Zhaowen Xu


This paper studies the master–slave synchronization in a class of time-delay neutral Lur’e systems. Firstly, an augmented Lyapunov–Krasovskii functional (LKF) is constructed after fully utilizing the restrictions on time-varying delay and nonlinearities. Then, an extended reciprocal convex technique is proposed to estimate the LKF’s derivative, and some less conservative conditions are presented in terms of linear matrix inequalities. Furthermore, our methods can be applied to tackle more general cases such as the systems with different time-delays, delay-partitioning idea, and triple LKF method. Finally, two numerical examples are given to show the effectiveness and benefits of the proposed methods.


Neutral Lur’e systems Synchronization Time-varying delay Extended reciprocal convex technique (ERCT) Lyapunov–Krasovskii functional (LKF) 



This work is supported by National Natural Science Foundation of China (Nos. 61873123, 61873127), Natural Science Foundation of Jiangsu Province (Nos. BK20171419, BK20150888), Natural Science Foundation for Jiangsu’s Universities (No. 15KJB12004), and Fundamental Research Fund for Central Universities (Nos. NS2016030, NJ20160024).


  1. 1.
    H. Ahmed, I. Salgado, H. Rios, Robust synchronization of master–slave chaotic systems using approximate model: an experimental study. ISA Trans. 73, 141–146 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Cai, L. Huang, L. Zhang, Finite-time synchronization of master–slave neural networks with time-delays and discontinuous activations. Appl. Math. Model. 47, 208–226 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Carroll, L. Pecora, Synchronization in chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–56 (1991)CrossRefGoogle Scholar
  4. 4.
    W. Chen, D. Wei, X. Lu, Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3298–3312 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Guo, Exponential stability analysis of traveling waves solutions for nonlinear delayed cellular neural networks. Dyn. Syst. 32(4), 490–503 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Y. Guo, Global stability analysis for a class of Cohen–Grossberg neural network models. Bull. Korean Math. Soc. 49(6), 1193–1198 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Y. Guo, Mean square exponential stability of stochastic delay cellular neural networks. Electron. J. Qual. Theory Differ. Equ. 34, 1–10 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Y. Guo, Globally robust stability analysis for stochastic Cohen–Grossberg neural networks with impulse control and time-varying delays. Ukr. Math. J. 69(8), 1220–1233 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Hua, X. Guan, Master–slave synchronization criteria of Lur’e systems with time-delay feedback control. Appl. Math. Comput. 244(1), 895–902 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    C. Hua, C. Ge, X. Guan, Synchronization of chaotic Lur’e systems with time delays using sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1214–1221 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Huang, G. Feng, Synchronization of nonidentical chaotic neural networks with time delays. Neural Netw. 22, 869–874 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Huang, G. Feng, Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties. Chaos 19, 033128 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    H. Huang, G. Feng, J. Cao, Exponential synchronization of chaotic Lur’e systems with delayed feedback control. Nonlinear Dyn. 57, 441–453 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Huang, G. Feng, Robust \(H_\infty \) synchronization of chaotic Lur’e systems. Chaos 18, 033113 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    X. Ji, M. Ren, H. Su, On designing time-delay feedback controller for master-slave synchronization of Lur’e systems. Asian J. Control 16(1), 308–312 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    K. Ko, W. Lee, P. Park, D. Sun, Delays-dependent region partitioning approach for stability criterion of linear systems with multiple time-varying delays. Automatica 87, 389–394 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    T. Lee, J. Park, Improved criteria for sampled-data synchronization of chaotic Lur’e systems using two new approaches. Nonlinear Anal. Hybrid Syst. 24, 132–145 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    T. Li, G. Zhang, S. Fei, S. Zhang, Further criteria on master–slave synchronization in chaotic Lur’e systems using delay feedback control. Circuits Syst. Signal Process. 35(8), 2992–3014 (2016)CrossRefzbMATHGoogle Scholar
  19. 19.
    T. Li, T. Wang, A. Song, S. Fei, Delay-derivative-dependent stability for delayed neural networks with unbounded distributed delay. IEEE Trans. Neural Netw. 21, 1365–1371 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Liu, X. Jia, New absolute stability criteria for uncertain Lur’e systems with time-varying delays. J. Frankl. Inst. 355(9), 4015–4031 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Liu, Robust absolute stability criteria for uncertain Lurie interval time-varying delay systems of neutral type. ISA Trans. 60, 2–11 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Liu, D. Ho, Q. Song, W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances. IEEE Trans. Cybern.
  23. 23.
    X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Long, C. Zhang, Y. He, L. Jiang, M. Wu, Stability analysis of Lur’e systems with additive delay components via a relaxed matrix inequality. Appl. Math. Comput. 328, 224–242 (2018)MathSciNetGoogle Scholar
  25. 25.
    S. Ma, Y. Kang, Exponential synchronization of delayed neutral-type neural networks with Levy noise under non-Lipschitz condition. Commun. Nonlinear Sci. Numer. Simul. 57, 372–387 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Park, S. Lee, P. Park, An improved stability criteria for neutral-type Lur’e systems with time-varying delays. J. Frankl. Inst. 355(12), 5291–5309 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Park, S. Lee, P. Park, An improved fragmentation approach to sampled-data synchronization of chaotic Lur’e systems. Nonlinear Anal. Hybrid Syst. 29, 333–347 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Senan, M. Ali, R. Vadivel, S. Arik, Decentralized event-triggered synchronization of uncertain Markovian jumping neutral-type neural networks with mixed delays. Neural Netw. 86, 32–41 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Shen, S. Huo, J. Cao, T. Huang, Generalized state estimation for Markovian coupled networks under Round-Robin protocol and redundant channels. IEEE Trans. Cybern.
  30. 30.
    H. Shen, F. Li, H. Yan, H. Karimi, H. Lam, Finite-time event-triggered \(H_\infty \) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst.
  31. 31.
    Y. Sheng, H. Zhang, Z. Zeng, Synchronization of reaction–diffusion neural networks with dirichlet boundary conditions and infinite delays. IEEE Trans. Cybern. 47(10), 3005–3017 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Shi, X. Liu, S. Zhong, C. Yin, Novel delay-dependent master–slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control. Appl. Math. Comput. 282(5), 137–154 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    K. Shi, Y. Tang, X. Liu, S. Zhong, Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185–199 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Shi, X. Liu, H. Zhu, S. Zhong, Novel integral inequality approach on master-slave synchronization of chaotic delayed Lur’e systems with sampled-data feedback control. Nonlinear Dyn. 83(3), 1259–1274 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    R. Sivasamy, R. Rakkiyappan, Improved stability criteria for neutral type Lur’e systems with time-varying delays. Appl. Math. Lett. 38, 168–173 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    J. Sun, G. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 46(2), 466–470 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    J. Tao, Z. Wu, H. Su, Y. Wu, Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity. IEEE Trans. Cybern.
  38. 38.
    Y. Wan, J. Cao, G. Wen, Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2638–2647 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Y. Wang, X. Zhang, Y. He, Improved delay-dependent robust stability criteria for a class of uncertain mixed neutral and Lur’e dynamical systems with interval time-varying delays and sector-bounded nonlinearity. Nonlinear Anal. Real World Appl. 13(5), 2188–2194 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    T. Wang, S. Zhao, W. Zhou, W. Yu, Finite-time master–slave synchronization and parameter identification for uncertain Lurie systems. ISA Trans. 53(4), 1184–1190 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Zhang, C. Zeng, S. Zhong, K. Shi, New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems. Nonlinear Anal. Hybrid Syst. 29, 303–321 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    R. Zhang, C. Zeng, S. Zhong, Novel master–slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control. J. Frankl. Inst. 354(12), 4930–4954 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    C. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems, bounding inequalities and augmented Lyapunov–Krasovskii functionals. IEEE Trans. Autom. Control 62, 5331–5336 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    C. Zhang, Y. He, L. Jiang, M. Wu, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85, 481–485 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    F. Zhang, H. Trentelman, J. Scherpen, Fully distributed robust synchronization of networked Lur’e systems with incremental nonlinearities. Automatica 50(11), 2515–2526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    C. Zheng, Z. Wei, Z. Wang, Robustly adaptive synchronization for stochastic Markovian neural networks of neutral type with mixed mode-dependent delays. Neurocomputing 171(1), 1254–1264 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.School of Instrument Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  3. 3.Institute of Intelligence Science and EngineeringShenzhen Polytechnic CollegeShenzhenPeople’s Republic of China

Personalised recommendations