Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1639–1653 | Cite as

On the Stability Analysis of Systems of Neutral Delay Differential Equations

  • Muyang Liu
  • Ioannis DassiosEmail author
  • Federico Milano


This paper focuses on the stability analysis of systems modeled as neutral delay differential equations (NDDEs). These systems include delays in both the state variables and their time derivatives. The proposed approach consists of a descriptor model transformation that constructs an equivalent set of delay differential algebraic equations (DDAEs) of the original NDDEs. We first rigorously prove the equivalency between the original set of NDDEs and the transformed set of DDAEs. Then, the effect on stability analysis is evaluated numerically through a delay-independent stability criterion and the Chebyshev discretization of the characteristic equations.


Time delay Delay differential algebraic equations (DDAEs) Neutral time-delay differential equations (NDDEs) Eigenvalue analysis Delay-independent stable 



This material is supported by the Science Foundation Ireland, by funding Muyang Liu, Ioannis Dassios and Federico Milano, under Investigator Programme Grant No. SFI/15/IA/3074.


  1. 1.
    N.G.A. Bellen, A. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1, 212 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Breda, Solution operator approximations for characteristic roots of delay differential equations. Appl. Numer. Math. 56, 305 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Breda, S. Maset, R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions. Appl. Numer. Math. 56, 318 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W.H. Chen, W.X. Zheng, Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica 43, 95 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. De la Sen, About robust stability of dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2008, 1687 (2008). MathSciNetGoogle Scholar
  6. 6.
    M. De la Sen, A. Ibeas, Stability results for switched linear systems with constant discrete delays. Math. Probl. Eng. 2008, 28 (2008). Article ID 543145MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. Fridman, New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. J. Syst. Control Lett. 43, 309 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Fu, S.I. Niculescu, J. Chen, Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions. IEEE Trans. Autom. Control 51(6), 1063 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    K. Gopalsamy, B. Zhang, On a neutral delay-logistic equation. Dyn. Stab. Syst. 2, 183 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Science Business Media, New York, 2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Q.L. Han, L. Yu, Robust stability of linear systems with nonlinear parameter perturbations. IEEE Proc. Control Theory Appl. 151, 539 (2004)CrossRefGoogle Scholar
  12. 12.
    F. Hui, L. Jibin, On the existence of periodic solutions of a neutral delay model of single-species population growth. Math. Anal. Appl. 259, 8 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Ivanescu, S.I. Niculescu, L. Dugar, J.M. Dion, E.I. Verriest, On delay-dependent stability for linear neutral systems. Automatica 39, 255 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    E. Jarlebring, K. Meerbergen, W. Michiels, A Krylov method for the delay eigenvalue problem. SIAM J. Sci. Comput. 32(6), 3278 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H.R. Karimi, Robust delay-dependent \(h_{infty}\) control of uncertain time-delay systems with mixed neutral discrete and distributed time-delays and Markovian switching parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1910 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    V.B. Kolmanovskii, V.R. Nosov, Stability and Periodic Modes of Control Systems with Aftereffect (Moscow, Russia, 1981)Google Scholar
  17. 17.
    P. Kundur, N. Balu, Power System Stability and Control. EPRI Power System Engineering Series (McGraw-Hill, New York, 1994)Google Scholar
  18. 18.
    X.G. Li, X.J. Zhu, Stability analysis of neutral systems with distributed delays. Automatica 44, 2197 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    D. Liu, Q. Zheng, Stability Analysis of Neutral Systems with Distributed Delays in 7th International Conference on Advanced Intelligent Computing (Zhengzhou, China, 2011)Google Scholar
  20. 20.
    M. Liu, I. Dassios, F. Milano, Small-Signal Stability Analysis of Neutral Delay Differential Equation in 43th Annual Conference of the IEEE Industrial Electronics Society (IECON 2017) (Beijing, China, 2017)Google Scholar
  21. 21.
    M.S. Mahmoud, A. Ismail, Delay-dependent robust stability and stabilization of neutral systems. Appl. Math. Sci. 1(10), 471 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    W. Michiels, S. Niculescu, Stability and Stabilization of Time-Delay Systems (SIAM, Philadelphia, 2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    F. Milano, A Python-Based Software Tool for Power System Analysis, in Proceedings of the IEEE PES General Meeting (Vancouver, BC, 2013)Google Scholar
  24. 24.
    F. Milano, Small-signal stability analysis of large power systems with inclusion of multiple delays. IEEE Trans. Power Syst. 31(4), 3257 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Milano, I. Dassios, Small-signal stability analysis for non-index 1 hessenberg form systems of delay differential-algebraic equations. IEEE Trans. Circuits Syst. I Regul. Pap. 63(9), 1521 (2016). MathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Milano, M. Anghel, Impact of time delays on power system stability. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 889 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    B.M. Pao, C. Liu, G. Yin, Topics in Stochastic Analysis and Nonparametric Estimation (Science Business Media, New York, 2008)Google Scholar
  28. 28.
    S. Stojanovic, Robust finite-time stability of discrete time systems with interval time-varying delay and nonlinear perturbations. J. Frankl. Inst. 354, 4549 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    E. Süli, D.F. Mayers, An Introduction to Numerical Analysis (Cambridge University Press, Cambridge, 2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    D. Yue, Q.L. Han, A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model. IEEE Trans. Circuits Syst. II Express Br. 51, 685 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University College DublinDublinIreland

Personalised recommendations