Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1596–1618 | Cite as

Synchronization of Network Systems Subject to Nonlinear Dynamics and Actuators Saturation

  • Yanzhou Li
  • Yuanqing WuEmail author
  • Shenghuang He
Article
  • 75 Downloads

Abstract

This paper investigates the synchronization of network systems with time-varying delay, nonlinear dynamics and actuators saturation through the use of sampled-data controllers. Using tools from free-weighting matrix approach and Lyapunov stability theory, sufficient conditions for the synchronization of network systems are derived. It is theoretically shown that the synchronization of network systems can be achieved if the controller gain is selected suitably. Furthermore, the upper bound of sampling intervals for achieving synchronization is estimated via a simple algorithm. The effectiveness of the obtained results is verified through two numerical examples.

Keywords

Network systems Synchronization Sampled-data control Actuators saturation 

Notes

Acknowledgements

This work is supported by the China National Funds for Distinguished Young Scientists under Grant (61425009), Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar approved in 2015, the Zhejiang Provincial Natural Science Foundation of China under Grant (R1100716), the China National 863 Technology Projects under Grant (2015BAF32B03-05), the National Natural Science Foundation of China under Grants (61320106009, 61320106010), the Science and Technology Plan Project of Guangdong (2015B010131014, 2015B010106010, 2014B090907010).

References

  1. 1.
    Y.Y. Cao, Z. Lin, Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)CrossRefGoogle Scholar
  2. 2.
    E. Fridman, A. Seuret, J.P. Richard, Technical communique: robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Fridman, Introduction to time-delay and sampled-data systems, in 2014 European Control Conference (ECC) (2012), pp. 1428–1433Google Scholar
  4. 4.
    L.S. Hu, J. Lam, Y.Y. Cao, H.H. Shao, An LMI approach to robust \(H_{2}\) sampled-data control for linear uncertain systems. IEEE Trans. Cybern. 33(1), 149–155 (2002)Google Scholar
  5. 5.
    T. Hu, Z. Lin, B.M. Chen, An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2), 351–359 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    X.Z. Jin, G.H. Yang, W.W. Che, Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1345–1355 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Li, X. Jing, H.K. Lam, P. Shi, Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Circuits Syst. I-Regul. 44(7), 1111–1126 (2017)Google Scholar
  8. 8.
    J. Lu, D.W. Ho, Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Trans. Syst. Man Cybern. Syst 40(2), 350–361 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Liu, E. Fridman, Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48(1), 102–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Li, Y. Zhang, J. Hu, Z. Nie, Synchronization for general complex dynamical networks with sampled-data. Neurocomputing 74(5), 805–811 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, Y. Yin, F. Liu, Continuous gain scheduled \(H_{\infty }\) observer for uncertain nonlinear system with time-delay and actuator saturation. Int. J. Innov. Comput. Inf. Control 8(12), 8077–8088 (2012)Google Scholar
  12. 12.
    Q. Ma, J. Lu, H. Xu, Consensus for nonlinear multi-agent systems with sampled data. Trans. Inst. Meas. Control. 36(5), 618–626 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Rakkiyappan, N. Sakthivel, Stochastic sampled-data control for exponential synchronization of Markovian jumping complex dynamical networks with mode-dependent time-varying coupling delay. Circ. Syst. Signal Process. 34(1), 153–183 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Seuret, A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Seuret, J.J.M.G. Silva, Taking into account period variations and actuator saturation in sampled-data systems. Syst. Control Lett. 61(12), 1286–1293 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    B. Shen, Z. Wang, X. Liu, Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans. Autom. Control 57(10), 2644–2650 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Z. Shu, J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays. Int. J. Control 81(6), 865–882 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Tao, R. Lu, Z.-G. Wu, Y. Wu, Reliable control against sensor failures for Markov jump systems with unideal measurements. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2778298 Google Scholar
  19. 19.
    J. Tao, Z.-G. Wu, H. Su, Y. Wu, D. Zhang, Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity. IEEE Trans. Cybern. (2018).  https://doi.org/10.1109/TCYB.2018.2824853 Google Scholar
  20. 20.
    S. Tarbouriech, C. Prieur, J.M.G.D. Silva, Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Y. Wu, H.R. Karimi, R. Lu, Sampled-data control of network systems in industrial manufacture. IEEE Trans. Ind. Electron. (2018).  https://doi.org/10.1109/TIE.2018.2808903 Google Scholar
  22. 22.
    Y. Wu, R. Lu, P. Shi, H. Su, Z.-G. Wu, Sampled-data synchronization of complex networks with partial couplings and T–S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Wen, Z. Zeng, M.Z. Chen, T. Huang, Synchronization of switched neural networks with communication delays via the event-triggered control. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2334–2343 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Wu, H. Su, Z.-G. Wu, Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circ. Syst. Signal Process. 33(3), 699–712 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Wu, H. Su, Z.-G. Wu, Synchronisation control of dynamical networks subject to variable sampling and actuators saturation. IET Control Theory Appl. 9(3), 381–391 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Z.-G. Wu, P. Shi, H. Su, J. Chu, Network-based robust passive control for fuzzy systems with randomly occurring uncertainties. IEEE Trans. Fuzzy Syst. 21(5), 966–971 (2013)CrossRefGoogle Scholar
  27. 27.
    Z.-G. Wu, P. Shi, H. Su, J. Chu, Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44(12), 2635–2645 (2014)CrossRefGoogle Scholar
  28. 28.
    Z. Xu, P. Shi, H. Su, Z.-G. Wu, T. Huang, Global \(H_{\infty }\) pinning synchronization of complex networks with sampled-data communications. IEEE Trans. Neural Netw. Learn. Syst 29(5), 1–10 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D. Yao, B. Zhang, P. Li, H. Li, Event-triggered sliding mode control of discrete-time Markov jump systems. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2836390 Google Scholar
  30. 30.
    B. Zhou, H. Gao, Z. Lin, G.R. Duan, Stabilization of linear systems with distributed input delay and input saturation. Automatica 48(5), 712–724 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    B. Zhou, W.X. Zheng, G.R. Duan, An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation. Automatica 47(2), 306–315 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    W. Zhang, M.S. Branicky, S.M. Phillips, Stability of networked control systems. IEEE Control Syst. Mag. 21(1), 84–99 (2001)CrossRefGoogle Scholar
  33. 33.
    Y. Zhao, H. Gao, Fuzzy-model-based control of an overhead crane with input delay and actuator saturation. IEEE Trans. Fuzzy Syst. 20(1), 181–186 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of AutomationGuangdong University of TechnologyGuangzhouChina

Personalised recommendations