Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1466–1481 | Cite as

CDTA-Based Capacitance Multipliers

  • Dalibor BiolekEmail author
  • Jiri Vavra
  • Ali Ümit Keskin
Article
  • 97 Downloads

Abstract

Two grounded capacitance multipliers employing the current differencing transconductance amplifier (CDTA) are proposed. They can be easily modified to the floating versions by using an additional difference voltage amplifier. Each multiplier contains one CDTA, one capacitor, pseudo-grounded via a low-impedance CDTA input terminal, and one or two resistors. A careful error analysis is made and both circuits are compared in terms of their benefits and drawbacks. The results of the measurements on the specimens exploiting on-chip CDTAs correspond to the design objectives.

Keywords

CDTA Capacitance multiplier Current amplifier Symbolic analysis Error analysis Simulation Measurement 

Notes

Acknowledgements

For research, the infrastructure of K217 UD Brno was used.

References

  1. 1.
    M.T. Abuelma’atti, N.A. Tasadduq, Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor. Microelectron. J. 30, 869–873 (1999)CrossRefGoogle Scholar
  2. 2.
    C.K. Alexander, M.N.O. Sadiku, Fundamentals of Electric Circuits, 5th edn. (McGraw Hill, New York, 2013), pp. 437–439Google Scholar
  3. 3.
    H. Alpaslan, DVCC-based floating capacitance multiplier design. Turk. J. Electr. Eng. Comput. Sci. 25, 1334–1345 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Biolek, CDTA—building block for current-mode analog signal processing, in Proceedings of the European Conference on Circuit Theory and Design (ECCTD’03) (Cracow, Poland, 2003), pp. 397–400Google Scholar
  5. 5.
    D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEU Int. J. Electron. Commun. 62, 92–96 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Biolek, A.Ü. Keskin, V. Biolkova, Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circ. Devices Syst. 4, 496–502 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Brinzoi, A. Cracan, N. Cojan, A new approach in designing electrically controlled capacitance multipliers, in Proceedings of the 10th International Symposium on Signals, Circuits and Systems (ISSCS 2011) (Iasi, Romania, 2011), pp. 1–4Google Scholar
  8. 8.
    J. Choi, J. Park, W. Kim, K. Lim, J. Laskar, High multiplication factor capacitor multiplier for an on-chip PLL loop filter. Electron. Lett. 45, 239–240 (2009)CrossRefGoogle Scholar
  9. 9.
    H.Y. Darweesh, F.A. Farag, Y.A. Khalaf, New active capacitance multiplier for low cutoff frequency filter design, in Proceedings of the 19th International Conference on Microelectronics (ICM 2007) (Cairo, Egypt, 2007), pp. 381–384Google Scholar
  10. 10.
    W.G. Davis, Capacitance multiplier circuit. United States Patent 3, 911, 296 (1975)Google Scholar
  11. 11.
    A. De Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectron. J. 40, 20–25 (2009)CrossRefGoogle Scholar
  12. 12.
    A.A. El-Adawy, A.M. Soliman, H.O. Elwan, A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans. Circuits Syst. II Express Briefs 47, 306–313 (2000)CrossRefGoogle Scholar
  13. 13.
    G. Ferri, S. Pennisi, A 1.5-V current-mode capacitance multiplier, in Proceedings of the 10th International Conference on Microelectronics (ICM’98) (Monastir, Tunisia, 1998), pp. 9–12Google Scholar
  14. 14.
    I. Hwang, Area-efficient and self-biased capacitor multiplier for on-chip loop filter. Electron. Lett. 42, 1392–1393 (2006)CrossRefGoogle Scholar
  15. 15.
    W. Jaikla, M. Siripruchyanun, An electronically controllable capacitance multiplier with temperature compensation, in Proceedings of International Symposium on Communications and Information Technologies (ISCIT’06) (Bangkok, Thailand, 2006), pp. 356–359Google Scholar
  16. 16.
    A. Jantakun, N. Pisutthipong, M. Siripruchyanun, Single element based novel temperature insensitive/electronically controllable floating capacitance multiplier and its application, in Proceedings of the International Conference on Electrical Engineering, Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2010) (Chiang Mai, Thailand, 2010), pp. 37–41Google Scholar
  17. 17.
    A.Ü. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc Circuits Devices Syst. 153, 214–218 (2006)CrossRefGoogle Scholar
  18. 18.
    A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Current conveyor based R- and C-multiplier circuits. AEU Int. J. Electron. Commun. 56, 312–316 (2002)CrossRefGoogle Scholar
  19. 19.
    Z. Kolka, V. Biolkova, D. Biolek, New version of SNAP simulator, in Proceedings of the International Conference Communication and Information Technologies (KIT 2017) (T. Zruby, Slovakia, 2017), pp. 1–4Google Scholar
  20. 20.
    T. Kulej, Regulated capacitance multiplier in CMOS technology, in Proceedings of 16th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES’09) (Lodz, Poland, 2009), pp. 316–319Google Scholar
  21. 21.
    A. Lahiri, DO-CCII based generalized impedance convertor simulates floating inductance, capacitance multiplier and FDNR. Aust. J. Electr. Electron. Eng. 7, 15–19 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Li, A.K.Y. Wong, Y.T. Zhang, Fully-integrated transimpedance amplifier for photoplethysmographic signal processing with two-stage Miller capacitance multiplier. Electron. Lett. 46, 745–746 (2010)CrossRefGoogle Scholar
  23. 23.
    I. Myderrizi, A. Zeki, Electronically tunable DXCCII-based grounded capacitance multiplier. AEU Int. J. Electron. Commun. 68, 899–906 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Pennisi, CMOS multiplier for grounded capacitors. Electron. Lett. 38, 765–766 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Pennisi, High accuracy CMOS capacitance multiplier, in Proceedings of the 9th International Conference on Electronics, Circuits and Systems (ECS2002) (Dubrovnik, Croatia, 2002), pp. 389–392Google Scholar
  26. 26.
    P. Prommee, M. Somdunyakanok, CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU Int. J. Electron. Commun. 65, 1–8 (2011)CrossRefGoogle Scholar
  27. 27.
    G.A. Rincon-Mora, Active capacitor multiplier in Miller-compensated circuits. IEEE J. Solid State Circuits 35, 26–32 (2000)CrossRefGoogle Scholar
  28. 28.
    N.A. Shah, S.Z. Iqbal, M. Quadri, Current-mode first-order all-pass filter using CDTA. Electron. World Wirel. World 111, 48 (2005) Google Scholar
  29. 29.
    K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez, S.H.K. Embabi, A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier. IEEE J. Solid State Circuits 38, 866–873 (2003)CrossRefGoogle Scholar
  30. 30.
    P. Silapan, C. Tanaphatsiri, M. Siripruchyanun, Current controlled CCTA based-novel grounded capacitance multiplier with temperature compensation, in Proceedings of the Asia Pacific Conference on Circuits and Systems (APCCAS 2008) (Macao, China, 2008), pp. 1490–1493Google Scholar
  31. 31.
    M. Siripryuchyanun, W. Jaikla, Floating capacitance multiplier using DVCC and CCCII, in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT’07) (Sydney, Australia, 2007), pp. 218–221Google Scholar
  32. 32.
    Y. Tang, M. Ismail, S. Bibyk, Adaptive Miller capacitor multiplier for compact on-chip PLL filter. Electron. Lett. 39, 43–45 (2003)CrossRefGoogle Scholar
  33. 33.
    W. Tangsrirat, W. Tanjaroen, Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Syst. Signal Process. 27, 81–93 (2008)CrossRefGoogle Scholar
  34. 34.
    W. Tangsrirat, T. Dumawipata, W. Surakampontorn, Multiple-input single output current-mode multifunction filter using current differencing transconductance amplifiers. AEU Int. J. Electron. Commun. 61, 209–214 (2007)CrossRefGoogle Scholar
  35. 35.
    W. Tangsrirat, T. Pukkalanun, P. Mongkolwai, W. Surakampontorn, Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. AEU Int. J. Electron. Commun. 65, 198–203 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Vavra, A capacitance multiplier based on DBTA, in Proceedings of the 2017 IEEE Nordic Circuits and Systems Conference (NORCAS 2917) (Linkoping, Sweden, 2017), pp. 1–5Google Scholar
  37. 37.
    J. Vavra, A grounded capacitance multiplier based on CCII. J. Telecommun. Electron. Comput. Eng. (2018) (in press) Google Scholar
  38. 38.
    E. Yuce, S. Minaei, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. Regul. Pap. 55, 266–275 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    E. Zadeh, CM circuits and the applications thereof to attenuate row-wise temporal noise in image sensors. United States Patent, 2,008,024,653,9 A1 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Military TechnologiesUniversity of Defence BrnoBrnoCzech Republic
  2. 2.Faculty of EngineeringYeditepe UniversityAtasehir, IstanbulTurkey

Personalised recommendations