Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1583–1595 | Cite as

Firefly Algorithm-Based Particle Filter for Nonlinear Systems

  • Weidong Zhou
  • Lu LiuEmail author
  • Jiaxin Hou
Article
  • 87 Downloads

Abstract

A particle filter (PF) has been considered one of the most useful tools for nonlinear non-Gaussian systems. However, the estimation accuracy is limited by sample impoverishment due to resampling. Therefore, a firefly algorithm-based PF is proposed to solve this problem. In the proposed algorithm, the resampling step is performed based on the firefly algorithm. Finally, simulations are conducted to illustrate the superior performance of the proposed algorithm over that of a PF and a regularized particle filter.

Keywords

Particle filter Sample impoverishment Firefly algorithm Nonlinear system 

Notes

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 61573113).

References

  1. 1.
    G. Choe, T. Wang, F. Liu et al., Visual tracking based on particle filter with spline resampling. Multim. Tools Appl. 74(17), 7195–7220 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Dash, B. Dam, R. Swain, Design of multipurpose digital FIR double-band filter using hybrid firefly differential evolution algorithm. Appl. Soft Comput. 59, 529–545 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Fu, Y. Jia, An improvement on resampling algorithm of particle filters. IEEE Trans. Signal Process. 58(10), 5414–5420 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S.M. Farahani, A.A. Abshouri, B. Nasiri et al., A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 1(5), 448–453 (2011)CrossRefGoogle Scholar
  5. 5.
    I. Fister Jr., X.S. Yang et al., A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13(1), 34–46 (2013)CrossRefGoogle Scholar
  6. 6.
    M.L. Gao, X.H. He, D.S. Luo et al., Object tracking using firefly algorithm. IET Comput. Vis. 7(4), 227–237 (2013)CrossRefGoogle Scholar
  7. 7.
    M.L. Gao, L.L. Li, X.M. Sun et al., Firefly algorithm (FA) based particle filter method for visual tracking. Optik Int. J. Light Electron Opt. 126(18), 1705–1711 (2015)CrossRefGoogle Scholar
  8. 8.
    L. He, S. Huang, Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240, 152–174 (2017)CrossRefGoogle Scholar
  9. 9.
    M.S. Haque, S. Choi, J. Baek, Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Ind. Electron. 65(3), 2693–2703 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Han, H. Lin, Y. Li et al., Adaptive fission particle filter for seismic random noise attenuation. IEEE Geosci. Remote Sens. Lett. 12(9), 1918–1922 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Kim, M. Tandale, P.K. Menon et al., Particle filter for ballistic target tracking with glint noise. J. Guid. Control Dyn. 33(6), 1918–1921 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Kiani, S.H. Pourtakdoust, State estimation of nonlinear dynamic systems using weighted variance-based adaptive particle swarm optimization. Appl. Soft Comput. 34, 1–17 (2015)CrossRefGoogle Scholar
  13. 13.
    S.H. Lee, J. Kang, S. Lee, Enhanced particle-filtering framework for vessel segmentation and tracking. Comput. Methods Programs Biomed. 148, 99–112 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Musso, N. Oudjane, F.L. Gland. Improving regularized particle filters. IOP Publishing Physics Web. (2001). https://www.researchgate.net/publication/281913789_Improving_regularized_particle_filters. Accessed Jan 2001
  15. 15.
    S.S. Mahtab, R. Abdolah, P. Naser, Classifying the weights of particle filters in nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 69–75 (2016)Google Scholar
  16. 16.
    K. Naidu, H. Mokhlis, A.H.A. Bakar et al., Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected reheat thermal power system. Int. J. Electr. Power Energy Syst. 63(1–2), 401–413 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Nobahari, A. Sharifi, A Novel Heuristic filter based on ant colony optimization for non-linear systems state estimation. Commun. Comput. Inf. Sci. 316, 20–29 (2012)Google Scholar
  18. 18.
    H. Nobahari, A. Sharifi, H. Mohammadkarimi, Swarm intelligence techniques applied to nonlinear systems state estimation (Springer, Berlin, 2013)CrossRefGoogle Scholar
  19. 19.
    H. Nobahari, M. Raoufi, A. Sharifi. A heuristic filter based on Firefly Algorithm for nonlinear state estimation. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence. (2016)Google Scholar
  20. 20.
    A. Rodríguez, F. Moreno, Evolutionary computing and particle filtering: a hardware-based motion estimation system. IEEE Trans. Comput. 64(11), 3140–3152 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. Shan, T. Tan, Y. Wei, Real-time hand tracking using a mean shift embedded particle filter. Pattern Recogn. 40(7), 1958–1970 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    M.C. Tian, Y.M. Bo, Z.M. Chen et al., Firefly algorithm intelligence optimized particle filter. Acta Autom. Sin. 42(1), 89–97 (2016)zbMATHGoogle Scholar
  23. 23.
    P. Wang, R.X. Gao, Adaptive resampling-based particle filtering for tool life prediction. J. Manuf. Syst. 37, 528–534 (2015)CrossRefGoogle Scholar
  24. 24.
    X.S. Yang, Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  25. 25.
    X.S. Yang, Firefly algorithms for multimodal optimization. Mathematics 5792, 169–178 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    S. Yu, S. Zhu, Y. Ma et al., Enhancing firefly algorithm using generalized opposition-based learning. Computing 97(7), 741–754 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D.L. Zhang, H.W. Xia, G.C. Ma et al., Particle filter based on firefly algorithm optimization for relative navigation of non-cooperative target. J. Chin. Inert. Technol. 25(2), 269–274 (2017)Google Scholar
  28. 28.
    H. Zhou, Z. Deng, Y. Xia et al., A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing 216, 208–215 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of AutomationHarbin Engineering UniversityHarbinChina

Personalised recommendations