Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1432–1451 | Cite as

Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches

  • Shuhuang Xiang
  • Xiaojun Chen
  • Yang ZhouEmail author
Article
  • 43 Downloads

Abstract

Linear networks with ideal switches have various applications in power converters, signal processing and control problems, which can be modeled by linear complementarity systems (LCSs). This paper presents new results on the least-element time-stepping method for simulation of linear networks with ideal switches for a class of LCSs. The method is efficient and stable and can be easily implemented. The convergence results and preliminary numerical results show that the least-element time-stepping method is efficient for verifying accuracy of approximate solutions.

Keywords

Linear network Ideal switch circuit Time-stepping method Convergence Linear complementarity system 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

References

  1. 1.
    V. Acary, O. Bonnefon, B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, vol. 69 (Springer, Dordrecht, 2010)zbMATHGoogle Scholar
  2. 2.
    V. Acary, O. Bonnefon, B. Brogliato, Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 29, 1042–1055 (2010)CrossRefGoogle Scholar
  3. 3.
    M.D. Bernardo, C. Budd, A. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer, New York, 2008)zbMATHGoogle Scholar
  4. 4.
    M.D. Bernardo, F. Garefalo, L. Glielmo, F. Vasca, Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuit Syst. I(45), 133–141 (1998)CrossRefGoogle Scholar
  5. 5.
    M.D. Bernardo, F. Vasca, Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuit Syst. I(45), 133–141 (1998)CrossRefGoogle Scholar
  6. 6.
    B. Brogliato, A. Daniilidis, C. Lemaréchal, V. Acary, On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55, 45–51 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    B. Brogliato, D. Goeleven, Existence, uniqueness of solutions and stability of nonsmooth multivalued Lur’e dynamical systems. J. Convex Anal. 20, 881–900 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. Camlibel, Complementarity methods in the analysis of piecewise linear dynamical systems. Ph.D. thesis, Center for Economic Research, Tilburg University, The Netherlands (2001)Google Scholar
  9. 9.
    M. Camlibel, W. Heemels, J. Schumacher, Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuit Syst. I(49), 349–357 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Camlibel, W. Heemels, J. Schumacher, On linear passive complementarity systems. Eur. J. Control 8, 220–237 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Camlibel, L. Iannelli, F. Vasca, Passivity and complementarity. Math. Program., Ser. A 145, 531–563 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M.K. Camlibel, W.P.M.H. Heemels, A. van der Schaft, J. Schumacher, Switched networks and complementarity. IEEE Trans. Circuits Syst. I(50), 1036–1046 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    X. Chen, Z. Wang, Computational error bounds for differential linear variational inequality. IMA J. Numer. Anal. 32, 957–982 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    X. Chen, S. Xiang, Newton iterations in implicit time-stepping method for differential linear complementarity systems. Math. Program. Ser. A 138, 579–606 (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    L. Chua, Nonlinear circuits. IEEE Trans. Circuits Syst. I(31), 69–87 (1984)CrossRefzbMATHGoogle Scholar
  16. 16.
    R. Cottle, J.S. Pang, R. Stone, The Linear Complementarity Problem (Academic Press, Boston, 1992)zbMATHGoogle Scholar
  17. 17.
    R. Frasca, M. Camlibel, I. Goknar, L. Iannelli, F. Vasca, Linear passive networks with ideal switches: consistent initial conditions and state discontinuities. IEEE Trans. Circuit Syst. I(57), 3138–3151 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    L. Han, A. Tiwari, M. Camlibel, J.S. Pang, Convergence of time-stepping schemes for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47, 3768–3796 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    W. Heemels, B. Brogliato, The complementarity class of hybrid dynamical systems. Eur. J. Control 9, 322–360 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    W.P.M.H. Heemels, M. Camlibel, A. van der Schaft, J. Schumacher, Modelling, well-posedness, and stability of switched electrical networks, in Hybrid Systems: Computation and Control, ed. by O. Maler, A. Pnueli (Springer, Berlin, 2003), pp. 249–266. (chap. LNCS 2623)CrossRefGoogle Scholar
  21. 21.
    W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, B. Brogliato, Observer-based control of linear complementarity systems. Int. J. Robust Nonlinear Contr. 21, 1193–1218 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    W.P.M.H. Heemels, M.K. Camlibel, J. Schumacher, On the dynamic analysis of piecewise linear networks. IEEE Trans. Circuit Syst. I(49), 315–327 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. Leenaerts, On linear complementarity systems. IEEE Trans. Circuit Syst. I(46), 1022–1026 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    D. Leenaerts, W. Bokhoven, Piecewise Linear Modeling and Analysis (Kluwer, Deventer, 1998)CrossRefGoogle Scholar
  25. 25.
    Y. Lootsma, A.J. van der Schaft, M. Camlibel, Uniqueness of solutions of relay systems. Automatica 35, 467–478 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J.S. Pang, Three modeling paradigms in mathematical programming. Math. Program. Ser. B 125, 297–323 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J.S. Pang, D. Stewart, Differential variational inequalities. Math. Program. Ser. A 113, 345–424 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    J.M. Schumacher, Complementarity systems in optimization. Math. Program. Ser. B 101, 263–295 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    V. Sessa, L. Iannelli, F. Vasca, A complementarity model for closed-loop power converters. IEEE Trans. Power Electron. 29(12), 6821–6835 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Tadeusiewicz, A. Kuczyński, A very fast method for the DC analysis of diode–transistor circuits. Circuits Syst. Signal Process. 32(2), 433–451 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Vandenberghe, B.L.D. Moor, J. Vandewalle, The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. IEEE Trans. Circuit Syst. I(36), 1382–1391 (1989)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A.J. van der Schaft, J.M. Schumacher, The complementarity-slackness class of hybrid systems. Math. Contr. Signals Syst. 9, 266–301 (1996)CrossRefzbMATHGoogle Scholar
  33. 33.
    A.J. van der Schaft, J.M. Schumacher, Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43, 483–490 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    J. van Eijndhoven, Solving the linear complementarity problem in circuit simulation. SIAM J. Control Optim. 24, 1050–1062 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    F. Vasca, L. Iannelli, M.K. Camlibel, R. Frasca, A new perspective for modeling power electronics converters: complementarity framework. IEEE Trans. Power Electron. 24, 456–468 (2009)CrossRefGoogle Scholar
  36. 36.
    X. Yao, L. Wu, W.X. Zheng, C. Wang, Passivity analysis and passification of Markovian jump systems. Circuits Syst. Signal Process. 29(4), 709–725 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information and Scientific ComputationCentral South UniversityChangshaChina
  2. 2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHong KongChina
  3. 3.School of Mathematics and StatisticsShandong Normal UniversityJinanChina

Personalised recommendations