Advertisement

A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ

  • Oren Z. Gall
  • Chuizhou Meng
  • Hansraj Bhamra
  • Henry Mei
  • Simon W. M. John
  • Pedro P. Irazoqui
Short Paper
  • 113 Downloads

Abstract

We report a wireless energy harvesting and telemetry storage system in 180 nm CMOS technology, demonstrated in situ in rat carcass. The implantable device has dimensions 13 mm × 15 mm and stores 87.5 mJ, providing a self-powering time of 8.5 s transmitting through tissue. We utilize an all-solid-state flexible supercapacitor of breakdown voltage 0.8 V and capacitance 400 mF to harvest incoming wireless power, followed by a boost converter CMOS that drives an active wireless transmitter at 1.5 V at 2.4 GHz in the industrial, scientific, and medical (ISM) band. The DC/DC converter component and switching frequency selection were guided by genetic algorithm analysis and use digital feedback to control the pulse width modulation (PWM), which slowly modifies the duty cycle to control output voltage fluctuations. This implantable medical device system presents the roadmap for batteryless energy harvesting in vivo and in clinical environments, exhibiting the highest operating storage density of 450 μJ/mm2 reported to date.

Keywords

Implantable device Energy harvesting Power management In situ Subcutaneous Supercapacitor Wireless transmission OOK modulation 

Notes

Acknowledgements

The authors would like to thank Henry Zhang for his assistance in device assembly and packaging. The authors would like to acknowledge Emily Cook for helpful discussions on multivibrator circuits. This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-11-1-4029.

References

  1. 1.
    M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Arnon, D. Bhastekar, D. Kedar, A. Tauber, A comparative study of wireless communication network configurations for medical applications. IEEE Wirel. Commun. 10(1), 56–61 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Arsalan, M.H. Ouda, L. Marnat, T.J. Ahmad, A. Shamim, K.N. Salama, A 5.2 GHz, 0.5 mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring, in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International 2013, pp. 1–4. IEEEGoogle Scholar
  4. 4.
    R.J. Baker, CMOS: circuit design, layout, and simulation, vol. 1 (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  5. 5.
    H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)CrossRefGoogle Scholar
  6. 6.
    R.A. Bercich, J. Joseph, O.Z. Gall, J. Maeng, Y.J. Kim, P.P. Irazoqui, in Implantable Device for Intramuscular Myoelectric Signal Recording. 34th Annual International Conference of the IEEE EMBS (2012)Google Scholar
  7. 7.
    R.A. Bercich, D.R. Duffy, P.P. Irazoqui, Far-field RF powering of implantable devices: safety considerations. IEEE Trans. Biomed. Eng. 60(8), 2107–2112 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Bhamra, Y.-J. Kim, J. Joseph, J. Lynch, O.Z. Gall, H. Mei, C. Meng, J.-W. Tsai, P. Irazoqui, A, Batteryless, Crystal-free, Multinode Synchronized SoC “Bionode” for Wireless Prosthesis Control. IEEE J. Solid-State Circuits 50(11), 2714–2727 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Bhamra, J. Lynch, M. Ward, P. Irazoqui, A noise-power-area optimized biosensing front end for wireless body sensor nodes and medical implantable devices. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25, 2917 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Bhamra, J.-W. Tsai, Y.-W. Huang, Q. Yuan, P. Irazoqui, 21.3 A sub-mm 3 wireless implantable intraocular pressure monitor microsystem, in Solid-State Circuits Conference (ISSCC), 2017 IEEE International 2017, pp. 356-357. IEEEGoogle Scholar
  11. 11.
    A. Borna, K. Najafi, A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J. Solid-State Circuits 49(2), 439–451 (2014)CrossRefGoogle Scholar
  12. 12.
    J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Brenna, F. Padovan, A. Neviani, A. Bevilacqua, A. Bonfanti, A.L. Lacaita, A 64-Channel 965-μW Neural Recording SoC With UWB Wireless Transmission in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 63(6), 528–532 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)CrossRefGoogle Scholar
  15. 15.
    A.P. Chandrakasan, N. Verma, D.C. Daly, Ultralow-power electronics for biomedical applications. Ann Rev Biomed Eng 10, 247 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Chao, C.-Y. Tsui, W.-H. Ki, A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications, in 2007 IEEE International Symposium on Circuits and Systems 2007, pp. 1349–1352. IEEEGoogle Scholar
  17. 17.
    J. Charthad, M.J. Weber, T.C. Chang, A. Arbabian, A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Chattopadhyay, N. Choudhary, Genetic algorithm based approach for low power combinational circuit testing, in VLSI Design, 2003. Proceedings. 16th International Conference on 2003, pp. 552–557. IEEEGoogle Scholar
  19. 19.
    E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International 2010, pp. 236–237. IEEEGoogle Scholar
  20. 20.
    E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Biomed. Circuits Syst. 4(6), 340–349 (2010)CrossRefGoogle Scholar
  21. 21.
    P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)CrossRefGoogle Scholar
  22. 22.
    B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer, Berlin, 2013)Google Scholar
  23. 23.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.-T. Huang, R. Rieger, An OOK body-channel transceiver front-end ASIC for distributed force measurement. Journal of Signal Processing Systems 64(2), 177–185 (2011)CrossRefGoogle Scholar
  25. 25.
    R.A. Huggins, Supercapacitors and electrochemical pulse sources. Solid State Ionics 134(1–2), 179–195 (2000)CrossRefGoogle Scholar
  26. 26.
    J. Jang, D. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless condition monitoring system powered by a Sub-100/spl mu/W vibration energy harvester. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 1082–1093 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Kalupson, D. Ma, C.A. Randall, R. Rajagopalan, K. Adu, Ultrahigh-power flexible electrochemical capacitors using binder-free single-walled carbon nanotube electrodes and hydrogel membranes. The Journal of Physical Chemistry C 118(6), 2943–2952 (2014)CrossRefGoogle Scholar
  28. 28.
    E.G. Kilinc, G. Conus, C. Weber, B. Kawkabani, F. Maloberti, C. Dehollain, A system for wireless power transfer of micro-systems in-vivo implantable in freely moving animals. IEEE Sens. J. 14(2), 522–531 (2014)CrossRefGoogle Scholar
  29. 29.
    Y.-J. Kim, H.S. Bhamra, J. Joseph, P.P. Irazoqui, An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1028–1032 (2015)CrossRefGoogle Scholar
  30. 30.
    P.C. Krause, O. Wasynczuk, S.D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, vol. 75 (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
  31. 31.
    Q. Liu, M.H. Nayfeh, S.-T. Yau, Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources 195(21), 7480–7483 (2010)CrossRefGoogle Scholar
  32. 32.
    C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1(3), 254–266 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Mark, Y. Chen, C. Sutardja, C. Tang, S. Gowda, M. Wagner, D. Werthimer, J. Rabaey, A 1 mm 3 2Mbps 330fJ/b transponder for implanted neural sensors, in 2011 Symposium on VLSI Circuits-Digest of Technical Papers 2011 Google Scholar
  34. 34.
    C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10(10), 4025–4031 (2010)CrossRefGoogle Scholar
  35. 35.
    C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevice 15(6), 973–983 (2013)CrossRefGoogle Scholar
  36. 36.
    V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, Ö. Oralkan, M. Öztürk, Flexible technologies for self-powered wearable health and environmental sensing. Proc. IEEE 103(4), 665–681 (2015)CrossRefGoogle Scholar
  37. 37.
    R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J.M. Carmena, M.M. Maharbiz, E. Alon, A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 50(1), 344–359 (2015)CrossRefGoogle Scholar
  38. 38.
    N.M. Neihart, R.R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52(11), 1950–1959 (2005)CrossRefGoogle Scholar
  39. 39.
    R. Saraswat, E. Rodriguez-Villegas, A low emission, low power non-linear frequency modulation based transmitter for implanted devices, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013, pp. 826–829. IEEEGoogle Scholar
  40. 40.
    Y.-C. Shih, T. Shen, B.P. Otis, A 2.3 W wireless intraocular pressure/temperature monitor. IEEE J. Solid-State Circuits 46(11), 2592–2601 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Shukla, A. Banerjee, M. Ravikumar, A. Jalajakshi, Electrochemical capacitors: technical challenges and prognosis for future markets. Electrochim. Acta 84, 165–173 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Waltari, K. Halonen, Reference voltage driver for low-voltage CMOS A/D converters, in Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on 2000, pp. 28–31. IEEEGoogle Scholar
  43. 43.
    H.A. Wheeler, Fundamental limitations of small antennas. Proceedings of the IRE 35(12), 1479–1484 (1947)CrossRefGoogle Scholar
  44. 44.
    A. Wong, D. McDonagh, O. Omeni, C. Nunn, M. Hernandez-Silveira, A. Burdett, Sensium: An ultra-low-power wireless body sensor network platform: design & application challenges, in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE 2009, pp. 6576–6579. IEEEGoogle Scholar
  45. 45.
    G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, T.S. Fisher, Graphitic Petal Electrodes for All-Solid-State Flexible Supercapacitors. Advanced Energy Materials 4(3), 1300515 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A batteryless 19 W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid-State Circuits 48(1), 199–213 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oren Z. Gall
    • 1
  • Chuizhou Meng
    • 2
  • Hansraj Bhamra
    • 1
  • Henry Mei
    • 2
  • Simon W. M. John
    • 3
  • Pedro P. Irazoqui
    • 2
  1. 1.Center for Implantable Devices and School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Center for Implantable Devices and Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.The Jackson LaboratoryHoward Hughes Medical InstituteBar HarborUSA

Personalised recommendations