Advertisement

FPGA Implementation of Lifting-Based Data Hiding Scheme for Efficient Quality Access Control of Images

  • Amit Phadikar
  • Goutam Kumar Maity
  • Tien-Lung Chiu
  • Himadri Mandal
Article
  • 65 Downloads

Abstract

In this paper, a hardware implementation of a data hiding technique is proposed for efficient quality access control of images using lifting-based discrete wavelet transformation (DWT). Host image is decomposed into n-level wavelet tiles. A binary watermark image is transmuted and embedded into high–high DWT coefficients using adaptive dither modulation technique without self-noise suppression. The embedding of external information into the host image will degrade the visual quality. This feature may be utilized for access control. At the decoder side, an authorized user can enjoy superior quality image by extracting watermark bits using minimum distance decoding. Field-programmable gate array-based hardware architecture is proposed for real-time implementation of the scheme. The experiment is done over a large number of benchmark images, and the results are found to be superior to the related work which is present in the literature. It is also seen that (a) in real-time processing, the scheme saves 89.53% power than the related implementation found in the literature, and (b) a very high throughput of 23.8 MB/s is achieved for watermarking encoder and decoder, respectively, at a maximum operating frequency of 130.14 MHz for the processing of (512 × 512) sized images.

Keywords

Quality access control Dither modulation Data hiding QIM FPGA 

Notes

Acknowledgements

This study was supported by the Ministry of Science and Technology (MOST), Taiwan R.O.C., under Grant Number MOST 107-3113-E-155-001-CC2,106-3113-E-155-001-CC2, 106-2221-E-155-036, 105-3113-E-155-001, 104-3113-E-155-001, 103-3113-E-155-001, 103-2221-E-155-028-MY3.

References

  1. 1.
    H. Belhadj, V. Aggrawal, A. Pradhan, A. Zerrouki, Power-aware FPGA design. Actel Corporation White Paper. 75 (2009)Google Scholar
  2. 2.
    K.D. Buch, Low power architecture and HDL coding practices for on-board hardware applications (2018). https://nepp.nasa.gov/mapld_2009/talks/…/Buch_Kaushal%20D._mapld09_pres_2.ppt. Accessed 09 Mar 2018
  3. 3.
    J. Chen, W. Hong, T.S. Chen, C.W. Shiu, Steganography for BTC compressed images using no distortion technique. Imaging Sci. J. 58(4), 177–185 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Coltuc, Low distortion transform for reversible watermarking. IEEE Trans. Image Process. 21(1), 412–417 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A.D. Darji, T.C. Lad, S.N. Merchant, A.N. Chandorkar, Watermarking hardware based on wavelet coefficients quantization method. Circuits Syst. Signal Process. 32(6), 2559–2579 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Das, R. Maity, N.P. Maity, VLSI-based pipeline architecture for reversible image watermarking by difference expansion with high-level synthesis approach. Circuits Syst. Signal Process. 37(4), 1575–1593 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Garrault, B. Philofsky, HDL coding practices to accelerate design performance. Xilinx White Paper # 231, pp. 1–22 (2006)Google Scholar
  8. 8.
    A. Gerimella, M.V.V. Satyanarayana, P.S. Murugesh, U.C. Niranjan, ASIC for digital color image watermarking, in Proceedings of IEEE 11th Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, vol 1, pp. 292–295 (2004)Google Scholar
  9. 9.
    S. Ghosh, B. Kundu, D. Datta, S.P. Maity, H. Rahaman, Design and implementation of fast FPGA based architecture for reversible watermarking, in Proceeding of International Conference on Electrical Information and Communication Technology, vol 1, pp. 1–6 (2013)Google Scholar
  10. 10.
    R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing using MATLAB (Pearson Education, Upper Saddle River, 2005)Google Scholar
  11. 11.
    R. Grosbois, P. Gerbelot, T. Ebrahimi, Authentication and access control in the JPEG 2000 compressed domain, in Proceeding of SPIE 46th Annual Meeting, Applications of Digital Image Processing, vol. 1, pp. 95–104 (2001)Google Scholar
  12. 12.
    S.J. Horng, D. Rosiyadi, P. Fan, X. Wang, M.K. Khan, An adaptive watermarking scheme for e-government document images. Multimed. Tools Appl. 72(3), 3085–3103 (2014)CrossRefGoogle Scholar
  13. 13.
    Image Database. http://www.cl.cam.ac.uk/fapp2/watermarking. (2010). Accessed 2010.
  14. 14.
  15. 15.
    C. Jin, J. Peng, Robustness of a blind image watermark detector designed by orthogonal projection. Electron Lett. Comput. Vis. Image Anal. 4, 11–20 (2004)CrossRefGoogle Scholar
  16. 16.
    R. Karri, K. Wu, P. Mishra, Y. Kim, Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(1), 1509–1517 (2002)CrossRefGoogle Scholar
  17. 17.
    P. Karthigaikumar, K. Baskaran, FPGA and ASIC implementation of robust invisible binary image watermarking algorithm using connectivity preserving criteria. Microelectron. J. 42(1), 82–88 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Kim, D. Shin, L. Leng, C.-N. Yang, Lossless data hiding for absolute moment block truncation coding using histogram modification. J. Real-Time Image Proc. 14(1), 101–114 (2018)CrossRefGoogle Scholar
  19. 19.
    R. Kountchev, M. Milanova, R. Kountcheva, Content protection and hierarchical access control in image databases, in Proceeding of International Symposium on Innovations in Intelligent Systems and Applications, vol. 1, pp. 1–6 (2015)Google Scholar
  20. 20.
    S.L. Lin, C.F. Huang, M.H. Liou, C.Y. Chen, Improving histogram-based reversible information hiding by an optimal weight-based prediction scheme. J. Inf. Hiding Multimed. Signal Process. 4(1), 19–33 (2013)Google Scholar
  21. 21.
    J. Liu, K. She, A hybrid approach of DWT and DCT for rational dither modulation watermarking. Circuits Syst Signal Process. 31(2), 797–811 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    C.C. Lo, Y.C. Hu, W.L. Chen, C.M. Wu, Reversible data hiding scheme for BTC-compressed images based on histogram shifting. Int J Secur Appl. 8(2), 301–314 (2014)Google Scholar
  23. 23.
    M. Maes, T. Kalker, J.P. Linnartz, J. Talstra, F.G. Depovere, J. Haitsma, Digital watermarking for DVD video copy protection. IEEE Signal Process. Mag. 17(5), 47–57 (2000)CrossRefGoogle Scholar
  24. 24.
    S.P. Maity, M.K. Kundu, Distortion free image-in-image communication with implementation in FPGA. AEU Int. J. Electron Commun. 67(1), 438–447 (2013)CrossRefGoogle Scholar
  25. 25.
    H.K. Maity, S.P. Maity, FPGA implementation of reversible watermarking in digital image using reversible contrast mapping. J. Syst. Softw. 96(1), 93–104 (2014)CrossRefGoogle Scholar
  26. 26.
    H.K. Maity, S.P. Maity, C. Delpha, A modified RCM for reversible watermarking with FPGA implementation, in Proceeding of 4th European Workshop on Visual Information Processing, pp. 100–105 (2013)Google Scholar
  27. 27.
    S.P. Mohanty, E. Kougianos, N. Ranganathan, VLSI architecture and chip for combined invisible robust and fragile watermarking. IET Comput. Digital Tech. 1(5), 600–611 (2007)CrossRefGoogle Scholar
  28. 28.
    S.P. Mohanty, N. Ranganathan, K. Balakrishnan, A dual voltage frequency VLSI chip for image watermarking in DCT domain. IEEE Trans. Circuits Syst. II Express Briefs 53(5), 394–398 (2006)CrossRefGoogle Scholar
  29. 29.
    S.P. Mohanty, N. Ranganathan, R.K. Namballa, VLSI implementation of visible watermarking for a secure digital still camera design, in Proceeding of 17th International Conference on VLSI Design, vol 1, pp. 1063–1068 (2004)Google Scholar
  30. 30.
    M. Nagabushanam, S. Ramachandran, Fast implementation of lifting based 1D/2D/3D DWT-IDWT architecture for image compression. Int. J. Comput. Appl. 51(6), 35–45 (2012)Google Scholar
  31. 31.
    A. Phadikar, S.P. Maity, M.K. Kundu, Quantization based data hiding scheme for efficient quality access control of images using DWT via lifting, in Proceeding of Sixth Indian Conference on Computer Vision, Graphics & Image Processing, vol. 1, pp. 265–272 (2008)Google Scholar
  32. 32.
    A. Phadikar, H. Mandal, G. Maity, T.L. Chiu, A new model of QIM data hiding for quality access control of digital image, in Proceeding of IEEE International Conference on Soft-Computing and Networks Security, vol. 1, pp. 1–5 (2015)Google Scholar
  33. 33.
    A.V. Subramanyam, S. Emmanuel, M.S. Kankanhalli, Robust watermarking of compressed and encrypted JPEG2000 images. IEEE Trans. Multimed. 14(3), 703–716 (2012)CrossRefGoogle Scholar
  34. 34.
    W. Sun, Z.M. Lu, Y.C. Wen, F.X. Yu, R.J. Shen, High performance reversible data hiding for block truncation coding compressed images. SIViP 7(2), 297–306 (2013)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  36. 36.
    S. Weng, J.S. Pan, X. Gao, Reversible watermark combining pre-processing operation and histogram shifting. J Inf Hiding Multimed. Signal Process. 3(4), 320–326 (2012)Google Scholar
  37. 37.
    L. Wilson, International technology roadmap for semiconductors (ITRS). Semiconductor Industry Association (2013)Google Scholar
  38. 38.
    I.K. Yeo, H.J. Kim, Generalized patchwork algorithm for image watermarking. Multimed. Syst. 9(3), 261–265 (2003)CrossRefGoogle Scholar
  39. 39.
    W. Zhu, M.V. Wickerhauser, Discrete wavelet transforms in practice. https://www.math.wustl.edu/~victor/talks/mvwpmf2.pdf. (2009). Accessed 09 Mar 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyMCKV Institute of EngineeringLiluah, HowrahIndia
  2. 2.Department of PhysicsPingla Thana MahavidyalayaMaligram, Paschim MedinipurIndia
  3. 3.Department of Photonics EngineeringYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations