Circuits, Systems, and Signal Processing

, Volume 38, Issue 2, pp 716–749 | Cite as

An Efficient QRS Complex Detection Using Optimally Designed Digital Differentiator

  • Chandan NayakEmail author
  • Suman Kumar Saha
  • Rajib Kar
  • Durbadal Mandal


Heart rate variability (HRV) analysis is considered as a preliminary diagnosis method to check the cardiac health of the human heart. The reliability of the HRV analysis system solely depends on the accuracy of the QRS complex detector. Hence, in this paper, an optimally designed digital differentiator (DD) for precise detection of QRS complex is proposed. The proposed DD is designed by using an efficient evolutionary optimization technique called gases Brownian motion optimization (GBMO) algorithm and is used in the preprocessing stage of the QRS detector. In GBMO algorithm, a balanced trade-off is maintained between both the exploration and the exploitation phases to find the global optimum solution. The electrocardiogram signal is preprocessed by using the proposed DD to generate the feature signals corresponding to the R-peaks only. The detection technique utilizes the principle of Hilbert transform and zeroes crossing detection. The proposed approach is verified against all the first channel records of MIT/BIH arrhythmia database by considering the standard QRS detection performance metrics and produces a sensitivity (Se) of 99.92%, positive predictivity (+P) of 99.92%, detection error rate (DER) of 0.1562%, QRS detection rate of 99.92%, accuracy (Acc) of 99.84%, and F score of 0.9992%. With respect to the standard performance metrics, the proposed QRS detector outperforms all the recently reported QRS detection techniques.


Digital differentiator Gases Brownian motion optimization Hilbert transform Electrocardiogram (ECG) QRS detection 



This project is financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Grant No: EEQ/2016/000215).


  1. 1.
    M. Abdechiri, M.R. Meybodi, H. Bahrami, Gases Brownian motion optimization: an algorithm for optimization. Appl. Soft Comput. 13(5), 2932–2946 (2013)CrossRefGoogle Scholar
  2. 2.
    V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–201 (1999)CrossRefGoogle Scholar
  3. 3.
    K. Arbateni, A. Bennia, Sigmoidal radial basis function ANN for QRS complex detection. Neurocomputing 145(5), 438–450 (2014)CrossRefGoogle Scholar
  4. 4.
    N.M. Arzeno, Z.D. Deng, C.S. Poon, Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 55(2), 478–484 (2008)CrossRefGoogle Scholar
  5. 5.
    D.S. Benitez, P.A. Gaydecki, A. Zaidi, A.P. Fitzpatrick, A new QRS detection algorithm based on the Hilbert transforms. Comput. Cardiol. 27, 379–382 (2000)Google Scholar
  6. 6.
    M. Benmalek, A. Charef, Digital fractional order operators for R-wave detection in the electrocardiogram signal. IET Signal Proc. 3(5), 381–391 (2008)CrossRefGoogle Scholar
  7. 7.
    F. Bouaziz, D. Boutana, M. Benidir, Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Proc. 8(7), 774–782 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Castells-Rufas, J. Carrabina, Simple and real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 21, 137–145 (2015)CrossRefGoogle Scholar
  9. 9.
    S.W. Chen, H.C. Chen, H.L. Chan, A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 82(3), 187–195 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Choi, M. Adnane, G.J. Lee, H. Jang, Z. Jiang, H.K. Park, Development of ECG beat segmentation method by combining low pass filter and irregular R–R interval check-up strategy. Expert Syst. Appl. 37(7), 5208–5218 (2010)CrossRefGoogle Scholar
  11. 11.
    C.J. Deepu, Y. Lian, A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015)CrossRefGoogle Scholar
  12. 12.
    A.K. Dohare, V. Kumar, R. Kumar, An efficient new method for the detection of QRS in the electrocardiogram. Comput. Electr. Eng. 40(5), 1717–1730 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Ferdi, J.P. Herbeuval, A. Charef, B. Boucheham, R wave detection using fractional digital differentiation. ITBM-RBM. 24(5–6), 273–280 (2000)Google Scholar
  14. 14.
    A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  15. 15.
    P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–1164 (1986)CrossRefGoogle Scholar
  16. 16.
    S. Jain, M.K. Ahirwal, A. Kumar, V. Bajaj, G.K. Singh, QRS detection using adaptive filters: a comparative study. ISA Trans. 66, 362–375 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Karimipour, M.R. Homaeinezhad, Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic template. Comput. Biol. Med. 52, 153–165 (2014)CrossRefGoogle Scholar
  18. 18.
    B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Kumar, A. Kumar, G.K. Singh, Electrocardiogram signal compression using singular coefficient truncation and wavelet coefficient coding. IET Sci. Meas. Technol. 10(4), 266–274 (2016)CrossRefGoogle Scholar
  20. 20.
    C.I. Leong, P.I. Mak, C.P. Lam, C. Dong, M.I. Vai, P.U. Mak, H.S. Pun, F. Wan, R.P. Martins, A 0.83 µW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35 µm CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6), 586–595 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Li, C. Zheng, C. Tai, Detection of ECG characteristic points using wavelet transform. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)CrossRefGoogle Scholar
  22. 22.
    Q. Lin, T. Ran, Z. Siyong, W. Yue, Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. China Ser. F Inf. Sci. 47(2), 184–198 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J.P.V. Madeiro, P.C. Cortez, J.A.L. Marques, C.R.V. Seisdedos, C.R.M.R. Sobrinho, An innovative approach to QRS segmentation based on first-derivative, Hilbert and wavelet transform. Med. Eng. Phys. 34(9), 1236–1246 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using harmony search algorithm. Int. J. Numer. Model. Electron. Netw. Devices Fields (2016). Google Scholar
  25. 25.
    S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft. Comput. 22(11), 3757–3783 (2018)CrossRefGoogle Scholar
  26. 26.
    M.S. Manikandan, K.P. Soman, A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012)CrossRefGoogle Scholar
  27. 27.
    J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)CrossRefGoogle Scholar
  28. 28.
    Y.J. Min, H.K. Kim, Y.R. Kang, G.S. Kim, J. Park, S.W. Kim, Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. Biomed. Circuits Syst. 7(4), 426–436 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRefGoogle Scholar
  30. 30.
    G.B. Moody, R.G. Mark, The impact of MIT-BIH Arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)CrossRefGoogle Scholar
  31. 31.
    K. Mourad, B.R. Fethi, Efficient automatic detection of QRS complexes in ECG signal based on reverse bi-orthogonal wavelet decomposition and nonlinear filtering. Measurement 94, 663–670 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Nallathambi, J.C. Príncipe, Integrate and fire pulse train automaton for QRS detection. IEEE Trans. Biomed. Eng. 61(2), 317–326 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  34. 34.
    D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput. Methods Programs Biomed. 144, 61–75 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Panigrahy, M. Rakshit, P.K. Sahu, FPGA implementation of the heart rate monitoring system. J. Med. Syst. (2016). Google Scholar
  36. 36.
    P. Phukpattaranont, QRS detection algorithm based on the quadratic filter. Expert Syst. Appl. 42(11), 4867–4877 (2015)CrossRefGoogle Scholar
  37. 37.
    R. Poli, S. Cagnoni, G. Valli, Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42(11), 1137–1141 (1995)CrossRefGoogle Scholar
  38. 38.
    N. Ravanshad, H.R. Dehsorkh, R. Lotfi, Y. Lian, A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 18(1), 183–192 (2014)CrossRefGoogle Scholar
  39. 39.
    P. Sabherwal, M. Agrawal, L. Singh, Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 36(11), 4637–4652 (2017)CrossRefGoogle Scholar
  40. 40.
    S.K. Saha, S.P. Ghoshal, R. Kar, D. Mandal, Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013)CrossRefGoogle Scholar
  41. 41.
    S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Seeker optimization algorithm: application to the design of the linear phase finite impulse response filter. IET Signal Proc. 6(8), 763–771 (2012)CrossRefGoogle Scholar
  42. 42.
    S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Gravitation search algorithm: application to the optimal IIR filter design. J. King Saud Univ. Eng. Sci. 26(1), 69–81 (2014)Google Scholar
  43. 43.
    S. Sahoo, B. Kanungo, S. Behera, S. Sabut, Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)CrossRefGoogle Scholar
  44. 44.
    T. Sharma, K.K. Sharma, QRS complex detection in ECG signals using locally adaptive weighted total variation denoising. Comput. Biol. Med. 87, 187–199 (2017)CrossRefGoogle Scholar
  45. 45.
    Z.-E.H. Slimane, A. Nait-AlI, QRS complex detection using empirical mode decomposition. Digit. Signal Proc. 20(4), 1221–1228 (2010)CrossRefGoogle Scholar
  46. 46.
    D.L. Vacchia, L. Camponovo, D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization. Comput. Stat. Data Anal. 82, 137–151 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    R. Vuerinckx, Y. Rolain, J. Schoukens, R. Pinteion, Design of stable IIR filters in the complex domain by automatic delay selection. IEEE Trans. Signal Process. 44(9), 2339–2344 (1996)CrossRefGoogle Scholar
  48. 48.
    D. Wei, Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Proc. 10(9), 1052–1061 (2016)CrossRefGoogle Scholar
  49. 49.
    D. Wei, Y.M. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transfer domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Z. Wei, W. Xueyun, Z.J. Jian, L. Hongxing, Fetal heartbeat detection by Hilbert transform and non-linear state-space projections. IET Sci. Meas. Technol. 9(1), 85–92 (2015)CrossRefGoogle Scholar
  51. 51.
    Q. Xue, Y.H. Hu, W.J. Tompkins, Neural-network based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39(4), 317–329 (1992)CrossRefGoogle Scholar
  52. 52.
    S. Yazdani, J.M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digit. Signal Proc. 56, 100–109 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Y.C. Yeh, W.J. Wang, QRS complexes detection for ECG signal: the difference operation method. Comput. Methods Programs Biomed. 91(3), 245–254 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Yochum, C. Renaud, S. Jacquir, Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed. Signal Process. Control 25, 46–52 (2016)CrossRefGoogle Scholar
  55. 55.
    A. Zamani, S.M. Barakati, S. Yousofi-Darmian, Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration. ISA Trans. 64, 56–66 (2016)CrossRefGoogle Scholar
  56. 56.
    F. Zhang, Y. Lian, QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans. Biomed. Circuits Syst. 3(4), 220–228 (2009)CrossRefGoogle Scholar
  57. 57.
    Z. Zidelmal, A. Amirou, M. Adnane, A. Belouchrani, QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 107(3), 490–496 (2012)CrossRefGoogle Scholar
  58. 58.
    Z. Zidelmal, A. Amirou, D. Ould-Abdeslam, A. Moukadem, A. Dieterlen, QRS detection using s-transform and Shannon energy. Comput. Methods Programs Biomed. 116(1), 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chandan Nayak
    • 1
    Email author
  • Suman Kumar Saha
    • 1
  • Rajib Kar
    • 2
  • Durbadal Mandal
    • 2
  1. 1.Department of Electronics and Telecommunication EngineeringNIT RaipurRaipurIndia
  2. 2.Department of Electronics and Communication EngineeringNIT DurgapurDurgapurIndia

Personalised recommendations