Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 1, pp 41–62 | Cite as

Non-Fragile Robust Strictly Dissipative Control of Disturbed T–S Fuzzy Systems with Input Saturation

  • Afrooz Naseri
  • Mohammad Hassan AsemaniEmail author
Article
  • 56 Downloads

Abstract

In this paper, a non-fragile controller for uncertain disturbed Takagi–Sugeno (T–S) fuzzy systems is proposed based on the non-parallel distributed compensation (non-PDC) concept with strictly (QGR) − α-dissipative criterion. To investigate a general T–S fuzzy model with a practical viewpoint, it is supposed that the T–S model consists of actuator saturation and external disturbances. Moreover, in order to handle the uncertainties of the practical components which realize the gains of the control signal, we consider bounded uncertainties in the controller gains which lead to a non-fragile T–S fuzzy controller. By employing a multiple Lyapunov function for the controller synthesis, less conservative non-PDC design conditions are derived in contrast with the common quadratic Lyapunov function-based ones. Sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs). Furthermore, to conquer the problem of specification of the upper bounds for the derivative of the grades of T–S fuzzy membership functions, we propose a novel method for obtaining the corresponding LMIs. The success of the developed technique is demonstrated through a numerical example α.

Keywords

T–S fuzzy system Dissipative system Non-fragile controller Input saturation Linear matrix inequality (LMI) 

References

  1. 1.
    S. Bezzaoucha, B. Marx, D. Maquin, J. Ragot, State and output feedback control for Takagi–Sugeno systems with saturated actuators. Int. J. Adapt. Control Signal Process. 30(6), 888–905 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Bouarar, K. Guelton, N. Manamanni, Robust non-quadratic static output feedback controller design for Takagi–Sugeno systems using descriptor redundancy. Eng. Appl. Artif. Intell. 26, 739–756 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    W.J. Chang, Y.J. Shih, Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and H∞ performance constraints. Neurocomputing 148, 512–520 (2015)CrossRefGoogle Scholar
  4. 4.
    X.H. Chang, G.H. Yang, Non-fragile H∞ filter design for discrete-time fuzzy systems with multiplicative gain variations. Inf. Sci. 266, 171–185 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    H.D. Choi, C.K. Ahn, P. Shi, L. Wu, M.T. Lim, Dynamic output-feedback dissipative control for T–S fuzzy systems with time-varying input delay and output constraints. IEEE Trans. Fuzzy Syst. 25(3), 511–526 (2017)CrossRefGoogle Scholar
  6. 6.
    Q.V. Dang, B. Allouche, L. Vermeiren, A. Dequidt, M. Dambrine, Design and implementation of a robust fuzzy controller for a rotary inverted pendulum using the Takagi–Sugeno descriptor representation. in IEEE Symposium on Computational Intelligence in Control and Automation (CICA) (2014), pp. 1–6Google Scholar
  7. 7.
    H. Du, N. Zhang, Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17, 343–356 (2008)Google Scholar
  8. 8.
    L. El Ghaoui, S.I. Niculescu, Advances in Linear Matrix Inequality Methods in Control (SIAM, Philadelphia, 2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Q. Gao, G. Feng, Z. Xi, Y. Wang, J. Qiu, A new design of robust sliding mode control for uncertain stochastic T–S fuzzy time-delay systems. IEEE Trans. Cybern. 44, 1556–1566 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Han, L. Wu, P. Shi, Q. Zeng, On dissipativity of Takagi–Sugeno fuzzy descriptor systems with time-delay. J. Franklin Inst. 349, 3170–3184 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S.A. Huang, G.H. Yang, Non-fragile H∞ dynamic output feedback control for uncertain Takagi–Sugeno fuzzy systems with time-varying delay. Int. J. Syst. Sci. 47, 2954–2964 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Kchaou, A.F. Hajjaji, A. Toumi, Non-fragile H∞ output feedback control design for continuous-time fuzzy systems. ISA Trans. 54, 3–14 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Kharrat, H. Gassara, A. El Hajjaji, M. Chabanee, Adaptive fuzzy observer-based fault-tolerant control for Takagi–Sugeno descriptor nonlinear systems with time delay. Circ. Syst. Signal Process. (2017).  https://doi.org/10.1007/s00034-017-0624-4 Google Scholar
  14. 14.
    Z. Lin, J. Liu, Y. Niu, Dissipative control of non-linear stochastic systems with Poisson jumps and Markovian switchings. IET Control Theory Appl. 6, 2367–2374 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Luo, J. Zhao, A generalized multiple Lyapunov functions method based non-fragile guaranteed cost control for uncertain switched fuzzy systems. Appl. Math. Comput. 237, 494–500 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Y. Ma, M. Chen, Q. Zhang, Memory dissipative control for singular T–S fuzzy time-varying delay systems under actuator saturation. J. Franklin Inst. 352, 3947–3970 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Manivannan, S. Muralisankar, Robust stability analysis of Takagi–Sugeno fuzzy nonlinear singular systems with time-varying delays using delay decomposition approach. Circ. Syst. Signal Process. 35, 791–809 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Marouf, R.M. Esfanjani, A. Akbari, M. Barforooshan, T–S fuzzy controller design for stabilization of nonlinear networked control systems. Eng. Appl. Artif. Intell. 50, 135–141 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Mukherjee, T. Bhattacharya, G. Ray, Robust stabilization of uncertain T–S fuzzy systems: an integral error dependent sliding surface design approach. in Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015) (Springer, 2015), pp. 297–312Google Scholar
  20. 20.
    M. Namazov, B. Tekgun, I.E. Celikkale, Design of stable Takagi–Sugeno fuzzy control system via LMIs with constraint on the input/output and initial state independence. in 2nd International Symposium on Computing in Science and Engineering (2011), pp. 950–956Google Scholar
  21. 21.
    J.T. Pan, T.M. Guerra, Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach. IEEE Trans. Fuzzy Syst. 20, 594–602 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Saifia, M. Chadli, S. Labiod, T.M. Guerra, Robust H∞ static output feedback stabilization of T–S fuzzy systems subject to actuator saturation. Int. J. Control Autom. Syst. 10, 613–622 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Saifia, M. Chadli, H. Karimi, S. Labiod, Fuzzy control for electric power steering system with assist motor current input constraints. J. Franklin Inst. 352, 562–576 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    C. Scherer, S. Weiland, Linear Matrix Inequalities in Control. Lecture Notes, vol. 3 (Dutch Institute for Systems and Control, The Netherlands, 2000)Google Scholar
  25. 25.
    S. Sheng, X. Zhang, H∞ filtering for TS fuzzy complex networks subject to sensor saturation via delayed information. IET Control Theory Appl. 11(70), 2370–2382 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Shi, X. Su, F. Li, Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Trans. Autom. Control 61, 1694–1699 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J.F. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    K. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (Wiley, New York, 2004)Google Scholar
  29. 29.
    Y. Wei, J. Qiu, X. Peng, H.K. Lam, T–S fuzzy-affine-model-based reliable output feedback control of nonlinear systems with actuator faults. Circ. Syst. Signal Proces. 37(1), 81–97 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    L. Wu, X. Yang, H.K. Lam, Dissipativity analysis and synthesis for discrete-time T–S fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Yan, C. Yang, X. Ma, J. Fu, L. Zhou, H∞ sampled-data control for T–S fuzzy singularly perturbed systems with actuator saturation. J. Intell. Fuzzy Syst. 33(2), 779–790 (2017)CrossRefzbMATHGoogle Scholar
  32. 32.
    H. Yang, X. Li, Z. Liu, L. Zhao, Robust fuzzy-scheduling control for nonlinear systems subject to actuator saturation via delta operator approach. Inf. Sci. 272, 158–172 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    J. Yoneyama, K. Hoshino, Non-fragile static output feedback control design with guaranteed cost of uncertain Takagi–Sugeno fuzzy systems. in 10th Asian Control Conference (ASCC), (2015), pp. 1–6Google Scholar
  34. 34.
    J. Yoneyama, Non-fragile output feedback control design of uncertain Takagi–Sugeno Fuzzy Systems. in 53rd IEEE Conference on Decision and Control (2014), pp. 6764–6769Google Scholar
  35. 35.
    T. Youssef, M. Chadli, Observer-based fault tolerant tracking control for T–S fuzzy models subject to actuator faults. IFAC-PapersOnLine 48, 1024–1029 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, W.B. Xie, M.Q. Shen, L. Huang, State augmented feedback controller design approach for T–S fuzzy system with complex actuator saturations. Int. J. Control Autom. Syst. 15, 2395–2405 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Zhao, H. Gao, Fuzzy-model-based control of an overhead crane with input delay and actuator saturation. IEEE Trans. Fuzzy Syst. 20, 181–186 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Zhao, D.J. Hill, Dissipativity theory for switched systems. IEEE Trans. Autom. Control 53, 941–953 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    L. Zhao, H. Gao, H.R. Karimi, Robust stability and stabilization of uncertain T–S fuzzy systems with time-varying delay: an input–output approach. IEEE Trans. Fuzzy Syst. 21, 883–897 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Power and Control Engineering, School of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations