Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 9, pp 3685–3701 | Cite as

Design of Linear Low-Power Voltage-Controlled Oscillator with I-MOS Varactor and Back-Gate Tuning

  • Manoj Kumar
Article

Abstract

This paper reports a new design of CMOS voltage-controlled oscillator (VCO) using three-transistor XOR gate and inversion mode MOSFET varactor tuning concept. Output frequency in the VCO has been varied by varying the output node capacitance with the use of inversion mode MOSFET tuning and back-gate tuning. Further, variation in the output frequency has been obtained with the power supply tuning for different value of back-gate voltages. Inversion mode MOSFET tuning has been achieved by varying the source/drain voltage from 0.6 to 2.2 V which provides the frequency variation from 1.630 to 1.232 GHz with power consumption of 296.393 \(\upmu \hbox {W}\) for inversion mode MOS varactor width of 5 \(\upmu \hbox {m}\). Results have also been obtained with inversion mode MOS varactor widths of 8 and 10 \(\upmu \hbox {m}\). Output frequency, power consumption and phase noise results have also been reported for the different values of back-gate and power supply voltages. A tuning range of 27.8, 32.7 and 34.3% has been achieved with the source/drain tuning for inversion mode MOS varactor width of 5, 8 and 10 \(\upmu \hbox {m}\), respectively. Moreover in power supply tuning the tuning range of approximately 134% has been obtained for different widths of inversion mode MOS varactor. VCO is showing the phase noise of \(-\,97.216\) dBc/Hz with an offset of 1 MHz from the carrier. Proposed VCO shows a linear tuning, low-power consumption and good phase noise performance.

Keywords

Back-gate tuning CMOS Delay cell I-MOS Low power MOS variable load XOR gate 

References

  1. 1.
    P. Andreani, S. Mattisson, On the use of MOS varactors in RF VCOs. IEEE J. Solid-State Circuits 35, 905 (2000)CrossRefGoogle Scholar
  2. 2.
    D.W. Boerstler, A low-jitter PLL clock generator for microprocessors with lock range of 340–612 MHz. IEEE J. Solid-State Circuits 34, 513 (1999)CrossRefGoogle Scholar
  3. 3.
    B. Catli, M.M. Hella, A 0.5V 3.6, 5.2 GHz CMOS multi-band VCO for ultra low-voltage wireless applications, in Circuits Syst., ISCAS 2008. IEEE International Symposium, pp. 996–999 (2008)Google Scholar
  4. 4.
    Y.-J. Chen, M. du Plessis, An integrated \(0.35\upmu {\rm m}\) CMOS optical receiver with clock and data recovery circuit. Microelectron. J. 37, 985 (2006)CrossRefGoogle Scholar
  5. 5.
    L.S. de Paula, A.A. Susin, S. Bampi, A wide band CMOS differential voltage-controlled ring oscillators. in Proceedings of the 21st Annual Symposium on Integrated Circuits and System Design, pp. 85–89 (2008)Google Scholar
  6. 6.
    M.J. Deen, M.H. Kazemeini, S. Naseh, Performance characteristics of an ultra-low power VCO. in Circuits Systems. 2003. ISCAS’03. Proceedings of the 2003 International Symposium, pp. I–I (2003)Google Scholar
  7. 7.
    S.K. Enam, A.A. Abidi, A 300 MHz CMOS voltage controlled ring oscillator. IEEE J. Solid-State Circuits 25, 312 (1990)CrossRefGoogle Scholar
  8. 8.
    B. Fahs, W.Y. Ali-Ahmad, P. Gamand, A two stage ring oscillator in 0.13um CMOS for UMB impulse radio. IEEE Trans. Microw. Theory Tech. 57, 1074 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Ikeda, S.-Y. Lee, H. Ito, N. Ishihara, K. Masu, 0.5 V 5.8 GHz highly linear current-reuse voltage-controlled oscillator with back-gate tuning technique. Jpn. J. Appl. Phys 54, 04DE06 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Jin, Low power current-mode voltage controlled oscillator for 2.4 GHz wireless applications. Comput. Electr. Eng. 40, 92 (2014)CrossRefGoogle Scholar
  11. 11.
    H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, S.-G. Lee, A very low-power quadrature VCO with back-gate coupling. IEEE J. Solid-State Circuits 39, 952 (2004)CrossRefGoogle Scholar
  12. 12.
    S.-Y. Lee, J.-Y. Hsieh, Analysis and implementation of a 0.9V voltage-controlled oscillator with low phase noise and low power dissipation. IEEE Trans. Circuits Syst. II Express Briefs 55, 624 (2008)CrossRefGoogle Scholar
  13. 13.
    W. Lee, J. Shim, J. Jeong, Design of a three-stage ring-type voltage-controlled oscillator with a wide tuning range by controlling the current level in an embedded delay cell. Microelectron. J. 44, 1328 (2013)CrossRefGoogle Scholar
  14. 14.
    T. Li, B. Ye, J. Jiang, 0.5V 1.3GHz voltage controlled ring oscillator, in IEEE international conference on ASIC, in ASIC, ASICON’09. IEEE 8th International Conference, pp. 1181–1184 (2009)Google Scholar
  15. 15.
    H.Q. Liu, W.L. Goh, L. Siek, A 0.18-\(\upmu \text{m}\) 10-GHz CMOS ring oscillator for optical transceivers. in Circuits System, ISCAS 2005. IEEE International Symposium, pp. 1525–1528 (2005)Google Scholar
  16. 16.
    Y. Luo, C. Ma, Y. Gan, M. Qian, T. Ye, A dual-band CMOS LC-VCO with highly linear frequency tuning characteristics. Microelectron. J. 46, 1420 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Maget, M. Tiebout, R. Kraus, Influence of novel MOS varactors on the performance of a fully integrated UMTS VCO in standard 0.25-\(\upmu \text{ m }\) CMOS technology. IEEE J. Solid-State Circuits 37, 953 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Mira, T. Divel, S. Ramet, J.-B. Begueret, Y. Deval, Distributed MOS varactor biasing for VCO gain equalization in 0.13 \(\upmu \text{ m }\) CMOS technology, in Radio Frequency Integrated Circuits Symposiumm. 2004. Digest of Papers. 2004 IEEE, pp. 131–134 (2004)Google Scholar
  19. 19.
    J.K. Panigrahi, D.P. Acharya, Performance analysis and design of wideband CMOS voltage controlled ring oscillator, in Industrial and Information Systems (ICIIS), 2010 Interantional Conference, pp. 234–238 (2010)Google Scholar
  20. 20.
    C.-H. Park, B. Kim, A low-noise, 900-MHz VCO in 0.6\(\upmu \text{ m }\) CMOS. IEEE J. Solid-State Circuits 34, 586 (1999)CrossRefGoogle Scholar
  21. 21.
    A. Ramazani, S. Biabani, G. Hadidi, CMOS ring oscillator with combined delay stages. AEU-Int. J. Electron. Commun. 68, 515 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Sanchez-Azqueta, S. Celma, F. Aznar, A 0.18\(\upmu \text{ m }\) CMOS ring VCO for clock and data recovery applications. Microelectron. Reliab. 51, 2351 (2011)CrossRefGoogle Scholar
  23. 23.
    M.-L. Sheu, Y.-S. Tiao, L.-J. Taso, A 1-V 4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 \(\upmu \text{ m }\) CMOS. Microelectron. J. 42, 897 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Thabet, S. Meillère, M. Masmoudi, J.-L. Seguin, H. Barthelemy, K. Aguir, A low power consumption CMOS differential-ring VCO for a wireless sensor. Analog Integr. Circuits Signal Process. 73, 731 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Xuemei, W. Zhigong, S. Lianfeng, Design and analysis of a three-stage voltage-controlled ring oscillator. J. Semicond. 34, 115003 (2013)CrossRefGoogle Scholar
  26. 26.
    A.E. Yalcin, A 5.9-GHz voltage controlled ring oscillator in 0.18-um CMOS. IEEE J. Solid State Circuits 39, 230 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Yannis, Mixed Analog-Digital VLSI devices and Technology (McGraw Hill, New York, 1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University School of Information, Communication and TechnologyGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations