Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 9, pp 3725–3738 | Cite as

Exponential Reduced-Order Observers for Nonlinear Systems Satisfying Incremental Quadratic Constraints

  • Younan Zhao
  • Wei Zhang
  • Wuyang Zhang
  • Fang Song
Article
  • 120 Downloads

Abstract

This paper considers the design problem of exponential reduced-order observers for nonlinear systems satisfying incremental quadratic constraints governed by an incremental multiplier matrix. Sufficient existence conditions of the exponential full-order observers are established and formulated in terms of matrix inequalities. Then, it is shown that the conditions under which an exponential full-order observer exists also guarantee the existence of an exponential reduced-order observer. Moreover, with a proper parameterization of the multiplier matrix, the design of reduced-order observers is reduced to solving linear matrix inequalities of the Lyapunov matrix and observer gain matrices. Finally, the effectiveness of the proposed design method is illustrated by an example.

Keywords

Observer design Nonlinear systems Reduced-order observers Incremental quadratic constraints Linear matrix inequalities 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51505273, the State Key Laboratory of Robotics and System (HIT) under Grant SKLRS-2014-MS-10, the Jiangsu Provincial Key Laboratory of Advanced Robotics Fund Projects under Grant JAR201401 and the Fund of MOE Key Laboratory of Image Processing and Intelligence Control (Huazhong University of Science and Technology) under Grant No. IPIC2015-02.

References

  1. 1.
    M. Abbaszadeh, H.J. Marquez, Nonlinear observer design for one-sided Lipschitz systems, in Proceedings of the 2010 American Control Conference , pp. 5284–5289 (2010)Google Scholar
  2. 2.
    B. Açıkmeşe, M. Corless, Stability analysis with quadratic Lyapunov functions: some necessary and sufficient multiplier conditions. Syst. Control Lett. 57(1), 78–94 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Açıkmeşe, M. Corless, Observers for systems with nonlinearities satisfying incremental quadratic constraints. Automatica 47(7), 1339–1348 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Arcak, Circle-Criterion Observers and Their Feedback Applications: An Overview (Birkhäuser Boston, Boston, 2006)CrossRefGoogle Scholar
  5. 5.
    M. Arcak, P. Kokotović, Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom. Control 46(7), 1146–1150 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Arcak, P. Kokotović, Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12), 1923–1930 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. Bai, Q. Zhou, L. Wang, Z. Yu, H. Li, Observer-based adaptive control for stochastic nonstrict-feedback systems with unknown backlash-like hysteresis. Int. J. Adapt. Control Signal Process. 31, 1481–1490 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Ben-Israel, T.N.E. Greville, Generalized inverses. CMS Books Math. 34(3), 406–413 (2003)MATHGoogle Scholar
  9. 9.
    T.N. Dinh, V. Andrieu, M. Nadri, U. Serres, Continuous-discrete time observer design for Lipschitz systems with sampled measurements. IEEE Trans. Autom. Control 60(3), 787–792 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    X. Fan, M. Arcak, Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50(4), 319–330 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    H.K. Khalil, Noninear Systems (Prentice-Hall, Upper Saddle River, 1996)Google Scholar
  12. 12.
    A.J. Krener, W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23(2), 197–216 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    H. Li, Y. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Z. Liu, L. Zhao, H. Xiao, C. Gao, Adaptive \(H_{\infty }\) integral sliding mode control for uncertain singular time-delay systems based on observer. Circuits Syst. Signal Process. 36(11), 4365–4387 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    L. Magnis, N. Petit, Angular velocity nonlinear observer from vector measurements. Automatica 75, 46–53 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Phanomchoeng, R. Rajamani, Observer design for Lipschitz nonlinear systems using Riccati equations, in Proceedings of the 2010 American Control Conference pp. 6060–6065 (2010)Google Scholar
  17. 17.
    M. Pourgholi, V.J. Majd, A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circuits Syst. Signal Process. 30(6), 1401–1415 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    D.M. Raimondo, G. Roberto Marseglia, R.D. Braatz, J.K. Scott, Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74, 107–117 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    R. Rajamani, Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. Selivanov, E. Fridman, Observer-based input-to-state stabilization of networked control systems with large uncertain delays. Automatica 74, 63–70 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    H. Su, H. Wu, X. Chen, Observer-based discrete-time nonnegative edge synchronization of networked systems. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2446–2455 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Su, H. Wu, X. Chen, M.Z.Q. Chen, Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2765678
  23. 23.
    F.E. Thau, Observing the state of non-linear dynamic systems. Int. J. Control 17(3), 471–479 (1973)CrossRefMATHGoogle Scholar
  24. 24.
    L. Wang, M. Basin, H. Li, R. Lu, Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/TFUZZ.2017.2774185
  25. 25.
    Y. Wang, R. Rajamani, D.M. Bevly, Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation. IEEE Trans. Autom. Control 62(4), 1940–1945 (2017)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Y. Wu, R. Lu, P. Shi, H. Su, Z. Wu, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Y. Wu, X. Meng, L. Xie, R. Lu, H. Su, Z. Wu, An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    X. Xia, W. Gao, Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 27(1), 199–216 (1989)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    W. Zhang, H. Su, H. Wang, Z. Han, Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4968–4977 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    W. Zhang, H. Su, F. Zhu, G.M. Azar, Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dyn. 79(2), 1469–1479 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    W. Zhang, H. Su, F. Zhu, S.P. Bhattacharyya, Improved exponential observer design for one-sided Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control 26(18), 3958–3973 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    W. Zhang, H. Su, F. Zhu, M. Wang, Observer-based \(H_{\infty }\) synchronization and unknown input recovery for a class of digital nonlinear systems. Circuits Syst. Signal Process. 32(6), 2867–2881 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2738155
  34. 34.
    Q. Zhou, L. Wang, C. Wu, H. Li, Adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems with time-varying delay and unknown dead zone. Fuzzy Sets Syst. 329, 36–60 (2017)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Q. Zhou, D. Yao, J. Wang, C. Wu, Robust control of uncertain semi-Markovian jump systems using sliding mode control method. Appl. Math. Comput. 286, 72–87 (2016)MathSciNetGoogle Scholar
  36. 36.
    F. Zhu, Z. Han, A note on observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 47(10), 1751–1754 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Intelligent Control and RoboticsShanghai University of Engineering ScienceShanghaiChina
  2. 2.MOE Key Laboratory of Image Processing and Intelligence ControlHuazhong University of Science and TechnologyWuhanChina
  3. 3.State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinChina

Personalised recommendations