Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 9, pp 3671–3684 | Cite as

A Complementary Current-Mirror-Based Bulk-Driven Down-Conversion Mixer for Wideband Applications

  • Qiuzhen Wan
  • Dandan Xu
  • Hui Zhou
  • Jun Dong
Article
  • 117 Downloads

Abstract

A novel high conversion gain, low power, current-mirror-based bulk-driven mixer implemented in a 0.18 \(\upmu \hbox {m}\) CMOS technology is presented in this paper. The architecture of the proposed mixer consists of the four complementary CMOS current-mirrors that are connected to form a double-balanced bulk-driven down-conversion mixer. The radio frequency (RF) signals are applied to the input terminals of the current-mirrors, and the local oscillator signals are applied directly to the bulk terminals of the current-mirrors’ output transistors, while the intermediate frequency (IF) signals are from the output terminals of the current-mirrors. With the input RF frequency range from 0.5 to 6.0 GHz and the fixed IF frequency of 100 MHz, the simulation results show that the proposed mixer achieves a power conversion gain of 14.0–15.1 dB, an input third-order intercept point of − 3.8 to − 3.0 dBm, and a double-sideband noise figure of 12.1–13.4 dB. A good port-to-port isolation is also achieved across the entire frequency band. The mixer has a compact chip area of 0.25 mm\(^{2}\) without the inductance passive components, and the mixer core dissipates only 3.1 mW under a supply voltage of 1.0 V.

Keywords

CMOS Current-mirror-based mixer Bulk-driven mixer High conversion gain Low power 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their valuable comments which helped in improving this manuscript. The authors would also like to thank the Project Supported by the Natural Science Foundation of Hunan Province under No. 2016JJ6095.

References

  1. 1.
    E.S. Atalla, F. Zhang, P.T. Balsara, A. Bellaouar, S. Ba, K. Kiasaleh, Time-domain analysis of passive mixer impedance: a switched-capacitor approach. IEEE Trans. Circuits Sys. I Regul. Pap. 64(2), 347–359 (2017)Google Scholar
  2. 2.
    D. Bhatt, J. Mukherjee, J.M. Redouté, Low-power linear bulk-injection mixer for wide-band applications. IEEE Microwave Wirel. Compon. Lett. 26(10), 828–830 (2016)CrossRefGoogle Scholar
  3. 3.
    D. Bhatt, J. Mukherjee, J.M. Redouté, A self-biased, mixer in 0.18 \(\upmu \)m CMOS for an ultra-wideband receiver. IEEE Trans. Microwave Theory Tech. 65(4), 1294–1302 (2017)CrossRefGoogle Scholar
  4. 4.
    H.K. Chiou, K.C. Lin, W.H. Chen, Y.Z. Juang, A 1-V 5-GHz self-bias folded-switch mixer in 90-nm CMOS for WLAN receiver. IEEE Trans. Circuits Syst. I Regul. Pap. 59(6), 1215–1227 (2012)Google Scholar
  5. 5.
    J.D. Chen, S.H. Wang, A low-power and high-gain ultra-wideband down-conversion active mixer in 0.18-\(\upmu \)m SiGe Bi-CMOS technology. Circuits Syst. Signal Process. 36(7), 2635–2653 (2017)Google Scholar
  6. 6.
    X.N. Fan, J. Tao, K. Bao, Z.G. Wang, A reconfigurable passive mixer for multimode multistandard receivers in 0.18 \(\upmu \)m CMOS. J. Semicond. 37(8), 085001–085008 (2016)CrossRefGoogle Scholar
  7. 7.
    S.S.K. Ho, C.E. Saavedra, A CMOS broadband low-noise mixer with noise cancellation. IEEE Trans. Microwave Theory Tech. 58(5), 1126–1132 (2010)CrossRefGoogle Scholar
  8. 8.
    M.G. Kim, H.W. An, Y.M. Kang, J.Y. Lee, T.Y. Yun, A. Low-Voltage, Low-power, and low-noise UWB mixer using bulk-injection and switched biasing techniques. IEEE Trans. Microwave Theory Tech. 60(8), 2486–2493 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Kim, J. Silva-Martinez, Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications. IEEE J. Solid State Circuits 48(9), 2090–2103 (2013)CrossRefGoogle Scholar
  10. 10.
    C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, H. Wang, A 10–35 GHz low power bulk-driven mixer using 0.13 \(\upmu \)m CMOS process. IEEE Microwave Wirel. Compon. Lett. 18(7), 455–457 (2008)Google Scholar
  11. 11.
    K.-H. Liang, H.-Y. Chang, Y.-J. Chan, A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-\(\upmu \text{m}\) CMOS technology. IEEE Microwave Wirel. Compon. Lett. 17(7), 531–533 (2007)Google Scholar
  12. 12.
    S.C. Luo, C.J. Huang, Y.H. Chu, A wide-range level shifter using a modified wilson current mirror hybrid buffer. IEEE Trans. Circuits Syst. I Regul. Pap. 61(6), 1656–1665 (2014)Google Scholar
  13. 13.
    J. Marttila, M. Allén, M. Kosunen, K. Stadius, J. Ryynänen, M. Valkama, Reference receiver enhanced digital linearization of wideband direct-conversion receivers. IEEE Trans. Microwave Theory Tech. 65(2), 607–620 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Ma, Z.G. Wang, J. Xu, A 1-V current-reused wideband current-mirror mixer in 180-nm CMOS with high IIP2. Circuits Syst. Signal Process. 36(5), 1806–1817 (2017)CrossRefGoogle Scholar
  15. 15.
    J.S. Park, C.H. Lee, B.S. Kim, J. Laskar, Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Trans. Microwave Theory Tech. 54(12), 4372–4380 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Parvizi, K. Allidina, M.N. El-Gamal, Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 \(\upmu \)W 0.6–4.2 GHz current-reuse CMOS LNA. IEEE J. Solid State Circuits 51(3), 574–586 (2016)Google Scholar
  17. 17.
    P. Qin, Q. Xue, A low-voltage folded-switching mixer using area-efficient CCG transconductor. IEEE Trans. Circuits Syst. II Express Br. 64(8), 877–881 (2017)Google Scholar
  18. 18.
    J. Shen, S.H. Chang, J. Shen, Q. Liu, X.M. Sun, A lightweight multi-layer authentication protocol for wireless body area networks. Future Gener. Comput. Syst. 78(3), 956–963 (2018)CrossRefGoogle Scholar
  19. 19.
    G.H. Tan, H. Ramiah, P.I. Mak, R.P. Martins, A 0.35-V 520-\(\upmu \)W 2.4-GHz current-bleeding mixer with inductive-gate and forward-body bias, achieving \(>13\)-dB conversion gain and \(>55\)-dB port-to-port isolation. IEEE Trans. Microwave Theory Tech. 65(4), 1284–1293 (2017)CrossRefGoogle Scholar
  20. 20.
    B.W. Wang, X.D. Gu, L. Ma, S.S. Yan, Temperature error correction based on BP neural network in meteorological WSN. Int. J. Sens. Netw. 23(4), 265–278 (2017)CrossRefGoogle Scholar
  21. 21.
    Q.Z. Wan, C.H. Wang, J.R. Sun, Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 \(\upmu \)m CMOS technology. Wirel. Pers. Commun. 70(1), 57–68 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.S. Yan, P.I. Mak, M.K. Law, R.P. Martins, F. Maloberti, Nested-current-mirror rail-to-rail-output single-stage amplifier with enhancements of DC gain, GBW and slew rate. IEEE J. Solid State Circuits 50(10), 2353–2366 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Information Science, Key Laboratory of Internet of Things Technology and ApplicationHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations