Advertisement

Circuits, Systems, and Signal Processing

, Volume 36, Issue 12, pp 4908–4918 | Cite as

An Accurate CMOS Interface Small Capacitance Variation Sensing Circuit for Capacitive Sensor Applications

  • H. G. Momen
  • M. Yazgi
  • R. Kopru
  • A. Naderi Saatlo
Article

Abstract

In this paper, an accurate front-end CMOS interface circuit for sensing very small capacitance changes in capacitive sensors is presented. The proposed structure scales capacitance variation to the sensible impedance changing. The scaling factor of the circuit can be easily tuned by adjusting bias points of the transistors. In order to cancel or decrease the parasitic components, the RC feedback and input transistor cascading techniques are employed in the design. To simulate the circuit, HSPICE simulator is utilized to verify the validity of the theoretical formulations in 0.18 \(\upmu \hbox {m}\) technology. According to schematic and post-layout simulation results, input impedance changes linearly versus capacitance variations up to 0.7 GHz, while the sensor capacitance changing is varied between 0 and 200 fF. According to the simulation results, total dc power consumption is obtained as low as 1 mW with 0.9 V power supply.

Keywords

Capacitance scaling Input impedance Gyrator Parasitic components Micro-sensor 

References

  1. 1.
    B.V. Amini, F. Ayazi, A 2.5-V 14-bit \(\Sigma \Delta \) CMOS SOI capacitive accelerometer. IEEE J. Solid-State Circuits 39, 2467–2476 (2004). doi: 10.1109/JSSC.2004.837025 CrossRefGoogle Scholar
  2. 2.
    T. Bakken, J. Choma, Gyrator-based synthesis of active on-chip inductances. Analog Integr. Circuits Signal Process. 34, 171 (2003). doi: 10.1023/A:1022524630707 CrossRefGoogle Scholar
  3. 3.
    A.B. Hammadi, M. Mhiri, F. Haddad, S. Saad, K. Besbes, An enhanced design of RF integrated differential active inductor. BioNanoScience (2016). doi: 10.1007/s12668-016-0206-0 Google Scholar
  4. 4.
    B. A. Hammadi, M. Mhiri, F. Haddad, S. Saad, K. Besbes, Design of wide-tuning high-Q differential active inductor for multistandard applications, in 12th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, pp. 1–6 (2015). doi: 10.1109/SSD.2015.7348250
  5. 5.
    L. Huanhuan, C. Diyi, Z. Hao, C. Wu, W. Xiangyu, Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Appl. Energy 185, 244–253 (2017). doi: 10.1016/j.apenergy.2016.10.080 CrossRefGoogle Scholar
  6. 6.
    K. Hyoungho, Highly configurable capacitive interface circuit for tri-axial MEMS microaccelerometer. Int. J. Electron. 99(7), 945–955 (2012). doi: 10.1080/00207217.2011.651691 CrossRefGoogle Scholar
  7. 7.
    M. Jang, K.S. Yun, MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes. Micro Nano Syst. Lett. 5, 4 (2017). doi: 10.1186/s40486-016-0037-3 CrossRefGoogle Scholar
  8. 8.
    X.Y. Li, S.Y. Yao, Y.Q. Zhao, CMOS readout circuit with new background suppression technique for room-temperature infrared FPA applications. Circuits Syst. Signal Process. 29, 1027 (2010). doi: 10.1007/s00034-010-9197-1 CrossRefzbMATHGoogle Scholar
  9. 9.
    M. Liu, C. Baoyong, L. Yunfeng, D. Jingxin, A closed-loop MEMS accelerometer with capacitive sensing interface ASIC. Int. J. Electron. 100(1), 21–35 (2013). doi: 10.1080/00207217.2012.669719 CrossRefGoogle Scholar
  10. 10.
    H.G. Momen, H. Tavakoli, E.A. Sani, A 3-axis MEMS capacitive accelerometer free of cross axis sensitivity, in 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, pp. 1491–1494 (2016). doi: 10.1109/IranianCEE.2016.7585757
  11. 11.
    H.G. Momen, M. Yazgi, R. Kopru, A.N. Saatlo, Design of a new low loss fully CMOS tunable floating active inductor. Analog Integr. Circuits Signal Process. (2016). doi: 10.1007/s10470-016-0784-3
  12. 12.
    H.G. Momen, M. Yazgi, R. Kopru, A low loss, low voltage and high Q active inductor with multi-regulated cascade stage for RF applications, in 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Cairo, pp. 149–152 (2015). doi: 10.1109/ICECS.2015.7440271
  13. 13.
    J.M. Nam, S.M. Jung, D.H. Yang et al., Design and implementation of \(160\times 192\) pixel array capacitive-type fingerprint sensor. Circuits Syst. Signal Process. 24, 401 (2005). doi: 10.1007/s00034-004-0818-4 CrossRefGoogle Scholar
  14. 14.
    M. Pandey, et al., Grounded active inductors design optimization for fQmax = 14.2 GHz using a 130 nm CMOS technology, in International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Istanbul, pp. 1–4 (2015). doi: 10.1109/SMACD.2015.7301693
  15. 15.
    D.M.G. Preethichandra, K. Shida, A simple interface circuit to measure very small capacitance changes in capacitive sensors. IEEE Trans. Instrum. Meas. 50, 1583–1586 (2001). doi: 10.1109/19.982949 CrossRefGoogle Scholar
  16. 16.
    G. Szczepkowski, G. Baldwin, R. Farrell, Wideband \(0.18 \upmu \text{m}\) CMOS VCO using active inductor with negative resistance, in 18th European Conference on Circuit Theory and Design (ECCTD), Seville, pp. 990–993 (2007). doi: 10.1109/ECCTD.2007.4529765
  17. 17.
    H. Tavakoli, E.A. Sani, A new method for eliminating cross axis sensitivity in two axis capacitive micromachined accelerometers, in 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–5, 14–16 May (2013)Google Scholar
  18. 18.
    A. Toker, A. Zeki, O. Cicekoglu, Generalized gyrator implementation techniques using unity-gain cells. Int. J. Electron. 88(5), 517–528 (2001). doi: 10.1080/00207210110041470 CrossRefGoogle Scholar
  19. 19.
    A.A. Trusov, A.M. Shkel, Parallel plate capacitive detection of large amplitude motion in MEMS, in Transducers 2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, pp. 1693–1696 (2007). DOI: 10.1109/SENSOR.2007.4300477
  20. 20.
    Wang, Y., Chodavarapu, V.P., Design of a CMOS readout circuit for wide-temperature range capacitive MEMS sensors, in Fifteenth International Symposium on Quality Electronic Design, Santa Clara, CA, pp. 738–742 (2014). DOI: 10.1109/ISQED.2014.6783400
  21. 21.
    B. Xu, D. Chen, H. Zhang et al., Dynamic analysis and modelling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81, 1263 (2015). doi: 10.1007/s11071-015-2066-5 CrossRefGoogle Scholar
  22. 22.
    C.Y. Yu, Robert Rieger, Evaluation of a readout circuit with ASIC oscillator for acoustic-wave sensor application. Int. J. Electron. Lett. 1(1), 9–17 (2013). doi: 10.1080/00207217.2013.766907 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • H. G. Momen
    • 1
  • M. Yazgi
    • 1
  • R. Kopru
    • 2
  • A. Naderi Saatlo
    • 3
  1. 1.Electronics and Communications DepartmentIstanbul Technical UniversityIstanbulTurkey
  2. 2.Electrical-Electronics Engineering DepartmentIşik UniversityIstanbulTurkey
  3. 3.Department of Electrical-Electronics Engineering, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations