Circuits, Systems, and Signal Processing

, Volume 37, Issue 5, pp 1807–1824 | Cite as

Oscillation-Based DFT for Second-Order Bandpass OTA-C Filters

Article
  • 111 Downloads

Abstract

This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor (OTA-C) filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter to oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25 \(\upmu \)m CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.

Keywords

Analog circuit testing Built-in self-test Oscillation-based test (OBT) Operational transconductance amplifier and capacitor (OTA-C) filters 

References

  1. 1.
    K. Arabi, B.L. Kaminska, Testing analogue and mixed-signal integrated circuits using oscillation-test method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(7), 745–753 (1997)CrossRefGoogle Scholar
  2. 2.
    K. Arabi, B.L. Kaminska, Oscillation-test methodology for low-cost testing of active analog filters. IEEE Trans. Instrum. Meas. 48(4), 798–806 (1999)CrossRefGoogle Scholar
  3. 3.
    D. Arbet, J. Brenkus, G. Gyepes, V. Stopjakova, in Increasing the Efficiency of Analog OBIST Using On-Chip Compensation of Technology Variations. IEEE 14th International Symposium Design and Diagnostics Electronic Circuits and Systems, (2011), pp. 71–74Google Scholar
  4. 4.
    D. Arbet, V. Stopjakova, in Influence of the Oscillation Frequency Value on the Efficiency of Oscillation-Based Tests. International Conference on Applied Electronics (2015), pp. 7–10Google Scholar
  5. 5.
    D. Arbet, V. Stopjakova, J. Brenkus, G. Gyepes, M. Kovac, L. Majer, BIST architecture for oscillation test of analog ICs and investigation of test hardware influence. Microelectron. Reliab. 54(5), 985–992 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Arbet, V. Stopjakova, M. Kovac, Investigation of the optimum oscillation frequency value towards increasing the efficiency of OBIST approach. Microelectron. Reliab. 55(7), 1120–1125 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Arbet, V. Stopjakova, L. Majer, G. Gyepes, G. Nagy, New OBIST using on-chip compensation of process variations towards increasing fault detectability in analog ICs. IEEE Trans. Nanotechnol. 12(4), 486–497 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Callegari, in Introducing Complex Oscillation Based Test: An Application Example Targeting Analog to Digital Converters. IEEE International Symposium Circuits and Systems, (2008), pp. 320–323Google Scholar
  9. 9.
    S. Callegari, F. Pareschi, G. Setti, M. Soma, Complex oscillation-based test and its application to analog filters. IEEE Trans. Circuits Syst. I Reg. Pap. 57(5), 956–969 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Callegari, F. Pareschi, G. Setti, M. Soma, On the usage of resonate and fire dynamics in the complex oscillation-based test approach. Int. J. Circuit Theory Appl. 41(12), 1290–1317 (2013)CrossRefGoogle Scholar
  11. 11.
    N. Cojan, A. Cracan, in Novel implementation of OBT for a Gm-C filter. 10th International Symposium Signals, Circuits and Systems, (2011), pp. 1–4Google Scholar
  12. 12.
    M. Hasan, Y. Sun, in Oscillation-Based Test Method for Continuous-Time OTA-C Filters. IEEE Asia Pacific Conference Circuits and Systems, (2006), pp. 904–907Google Scholar
  13. 13.
    M. Hasan, Y. Sun, in Oscillation-Based Test Structure and Method for OTA-C Filters. 13th IEEE International Conference Electronics, Circuits and Systems, (2006), pp. 98–101Google Scholar
  14. 14.
    M. Hasan, Y. Sun, X. Zhu, J. Moritz, in Oscillation-based DFT for Second-order OTA-C Filters. IEEE International Symposium Circuits and Systems, (2008), pp. 720–723Google Scholar
  15. 15.
    C.C. Hsu, W.S. Feng, Testable design of multiple-stage OTA-C filters. IEEE Trans. Instrum. Meas. 49(5), 929–934 (2000)CrossRefGoogle Scholar
  16. 16.
    G. Huertas, D. Vazquez, E.J. Peralias, A. Rueda, J.L. Huertas, Practical oscillation-based test of integrated filters. IEEE Des. Test Comput. 19(6), 64–72 (2002)CrossRefGoogle Scholar
  17. 17.
    G. Huertas, D. Vazquez, E.J. Peralias, A. Rueda, J.L. Huertas, Testing mixed-signal cores: practical oscillation-based test in an analog macrocell. IEEE Des. Test Comput. 19(6), 73–82 (2002)CrossRefGoogle Scholar
  18. 18.
    G. Huertas, D. Vaquez, A. Rueda, J.L. Huertas, Oscillation-Based Test in Mixed-Signal Circuits (Springer, Netherlands, 2010)Google Scholar
  19. 19.
    M. Milic, V. Litovski, Oscillation-based testing method for detecting switch faults in High-Q SC biquad filters. Facta Univ. 28(2), 223–236 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Milor, V. Viswanathan, Detection of catastrophic faults in analog integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(2), 114–130 (1989)CrossRefGoogle Scholar
  21. 21.
    J.R. Moritz, Y. Sun, Tuning of leapfrog multiple loop feedback bandpass filters. Electron. Lett. 37(11), 671–672 (2001)CrossRefGoogle Scholar
  22. 22.
    J.R. Moritz, Y. Sun, in Automatic tuning of high frequency, high Q, multiple loop feedback bandpass filters. IEEE International Symposium Circuits and Systems, (2002), pp. V605–V608Google Scholar
  23. 23.
    J. Moritz, Y. Sun, in 100 MHz, 6th Order, leap-Frog gm-C High Q Bandpass Filter and On-Chip Tuning scheme. IEEE International Symposium Circuits and Systems, (2006), pp. 2381–2384Google Scholar
  24. 24.
    S. Mosin, A built-in self-test circuitry based on reconfiguration for analog and mixed-signal IC. Inf. Technol. Control 40(3), 260–264 (2011)Google Scholar
  25. 25.
    P. Mrak, A. Biasizzo, F. Novak, Measurement accuracy of oscillation-based test of analog-to-digital converters. ETRI J. 32(1), 154–156 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Peralta, M. Costamagna, G. Peretti, E. Romero, C. Marques, in Estimating the Quality of Oscillation Based Test for Detecting Parametric Faults. 10th Latin American Test Workshop, (2009), pp. 1–6Google Scholar
  27. 27.
    G. Peretti, E. Romero, C. Marques, On the ability of the oscillation-based test for detecting deviation faults in switched-capacitor ladder filters. Electr. Eng. 90, 127–141 (2007)CrossRefGoogle Scholar
  28. 28.
    P. Petrashin, C. Dualibe, in OBT Implementation on Gm-C Filters Without Self-Tuning Capability. IEEE International Symposium Circuits and Systems, (2011), pp. 2521–2524Google Scholar
  29. 29.
    P. Petrashin, G. Peretti, E. Romero, in OBT Implementation on an OTA-C Band-Pass Filter. 11th International Symposium Quality Electronic Design, (2010), pp. 271–276Google Scholar
  30. 30.
    D. Peumans, G. Vandersteen, An improved describing function with applications for OTA-based circuits. IEEE Trans. Circuits Syst. I Reg. Pap. 64(7), 1748–1757 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Rodriguez-Vazquez, B. Linares-Barranco, J.L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans. Circuits Syst. 37(2), 198–211 (1990)CrossRefGoogle Scholar
  32. 32.
    E. Romero, G. Peretti, G. Huertas, D. Vazquez, Test of switched-capacitor ladder filters using OBT. Microelectron. J. 36, 1073–1079 (2005)CrossRefGoogle Scholar
  33. 33.
    E. Romero, G. Peretti, C. Marques, Oscillation test strategy: a case study. J. Electron. Test. 20, 389–396 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Stosovic, M. Milic, M. Zwolinski, V. Litovski, Oscillation-based analog diagnosis using artificial neural networks based inference mechanism. Comput. Electr. Eng. 39(2), 190–201 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Suenaga, E. Isern, R. Picos, S. Bota, M. Roca, E. Garcia-Moreno, Application of predictive oscillation-based test to a CMOS opamp. IEEE Trans. Instrum. Meas. 59(8), 2076–2082 (2010)CrossRefGoogle Scholar
  36. 36.
    D. Vazquez, A. Rueda, J.L. Huertas, E. Peralias, A high-Q bandpass fully differential SC filter with enhanced testability. IEEE J. Solid State Circuits 33(7), 976–986 (1998)CrossRefGoogle Scholar
  37. 37.
    D. Vazquez, A. Rueda, J.L. Huertas, A.M.D. Richardson, Practical DfT strategy for fault diagnosis in active analogue filters. Electron. Lett. 31(15), 1221–1222 (1995)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, H. Wang, D. Meng, B. Zhou, in Oscillation-Based Diagnosis by Using Harmonics Analysis on Analog Filters. International Symposium on VLSI Design, Automation and Test, (2014), pp. 1–4Google Scholar
  39. 39.
    C. Wannaboon, N. Jiteurtragool, T. Masayoshi, in Chaotic Oscillation-Based BIST for CMOS Operational Amplifier. International Soc Design Conference, (2014), pp. 130–131Google Scholar
  40. 40.
    M.W.T. Wong, On the issues of oscillation test methodology. IEEE Trans. Instrum. Meas. 49(2), 240–245 (2000)CrossRefGoogle Scholar
  41. 41.
    M.S. Zarnik, F. Novak, S. Macek, Design of oscillation-based test structures for active RC filters. IEE Proc. Circuits Devices Syst. 147(5), 295–302 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.School of Engineering and TechnologyUniversity of HertfordshireHatfieldUK

Personalised recommendations