Circuits, Systems, and Signal Processing

, Volume 37, Issue 5, pp 1958–1987 | Cite as

Directional Statistics Approach Based on Instantaneous Rotational Parameters of Tri-axial Trajectories for Footstep Detection

Article
  • 52 Downloads

Abstract

Polarization of tri-axial signals is defined using instantaneous rotational characteristics of the three-dimensional (3D) trajectory. We propose a rotational model to parameterize the time evolution of the 3D trajectory as a sequence of scaled rotations. Using this model, the velocity-to-rotation transform is defined to estimate the eigenangle, eigenaxis and orientation quaternion that quantify the instantaneous rotational parameters of the trajectory. These rotational parameters correspond to p-dimensional directional random vectors (DRVs). We propose two approaches to discriminate between the presence and absence of an elliptically polarized trajectory generated by human footsteps. In the first approach, we fit a von Mises–Fisher probability density function to the DRVs and estimate the concentration parameter. In the second approach, we employ the Kullback–Leibler divergence between the estimated nonparametric hyperspherical probability densities. The detection performance of the proposed metrics is shown to achieve an accuracy of \(97\%\) compared to existing approaches of \(82\%\) for footstep signals.

Keywords

Elliptical polarization 3D rotations Directional statistics Orientation quaternion 

References

  1. 1.
    J. Albusac, J. Castro-Schez, L. Lopez-Lopez, D. Vallejo, L. Jimenez-Linares, A supervised learning approach to automate the acquisition of knowledge in surveillance systems. Signal Process. 89(12), 2400–2414 (2009)CrossRefMATHGoogle Scholar
  2. 2.
    R. Bahrouna, O. Michelb, F. Frassatia, M. Carmonaa, J. Lacoumea, New algorithm for footstep localization using seismic sensors in an indoor environment. J. Sound Vib. 333(3), 1046–1066 (2014)CrossRefGoogle Scholar
  3. 3.
    N.L. Bihan, P.O. Amblard, Detection and estimation of Gaussian proper quaternion valued random processes. in Proceedings of IMA Conference on Mathematics (2006)Google Scholar
  4. 4.
    N.L. Bihan, J. Mars, Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process. 84(7), 1177–1199 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    C.H. Chapman, Fundamentals of Seismic Wave Propagation (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  6. 6.
    J.P. Claassen, Robust bearing estimation for three-component stations. Pure Appl. Geophys. J. 158(1–2), 349–374 (2001)CrossRefGoogle Scholar
  7. 7.
    I.S. Dhillon, S. Sra, Modelling Data Using Directional Distributions. Technical Report, The University of Texas at Austin (2003)Google Scholar
  8. 8.
    D. Donno, A. Nehorai, U. Spagnolini, Seismic velocity and polarization estimation for wavefield separation. IEEE Trans. Signal Process. 56, 4794–4809 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Gandhi, R. Chang, M.M. Trivedi, Video and seismic sensor-based structural health monitoring: framework, algorithms, and implementation. IEEE Trans. Intell. Transp. Syst. 8, 169–180 (2007)CrossRefGoogle Scholar
  10. 10.
    P. Ginzberg, A. Walden, Testing for quaternion propriety. IEEE Trans. Signal Process. 59(7), 3025–3034 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Goldman, Understanding quaternions. Gr. Models 73(2), 21–49 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Greenhalgh, I.M. Mason, B. Zhou, An analytical treatment of single station triaxial seismic direction finding. J. Geophys. Eng. 2, 8–15 (1995)CrossRefGoogle Scholar
  13. 13.
    A.J. Hanson, Visualising Quaternions, The Morgan Kaufmann Series in Interactive 3D Technology (Morgan Kaufmann, 2006)Google Scholar
  14. 14.
    V. Hari, A. Premkumar, X. Zhong, A decoupled approach for near-field source localization using a single acoustic vector sensor. Circuits Syst. Signal Process. 32, 843–859 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    K.M. Houston, D.P. McGaffigan, Spectrum analysis techniques for personnel detection using seismic sensors. IEEE Trans. Signal Process. 5090, 162–173 (2003)Google Scholar
  16. 16.
    C.J. Huang, H.Y. Yin, C.Y. Chen, C.H. Yeh, C.L. Wang, Ground vibrations produced by rock motions and debris flows. J. Geophys. Res. Earth Surf. 112 (2007)Google Scholar
  17. 17.
    J. Huang, S. Xiao, Q. Zhou, F.G.X. You, H. Li, B. Li, A robust feature extraction algorithm for the classification of acoustic targets in wild environments. Circuits Syst. Signal Process. 34, 2395–2406 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Jablonski, Anisotropic filtering of multidimensional rotational trajectories as a generalization of 2D diffusion process. Multidimens. Syst. Signal Process. 19, 379–399 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Y. Kawahara, M. Sugiyama, Change-point detection in time-series data by direct density-ratio estimation. in Proceedings of 9th SIAM International Conference on Data Mining, pp. 389–400 (2009)Google Scholar
  20. 20.
    B. Koszteczky, G. Vakulya, G. Simon, Forest intrusion detection system with sensor network. in Proceedings IEEE International Conference on Instrumentation and Measurement Technology, pp. 1672–1676 (2015)Google Scholar
  21. 21.
    S. Li, R.M. Mnatsakanov, M.E. Andrew, k-nearest neighbor based consistent entropy estimation for hyperspherical distributions. Entropy 13(3), 650–667 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    J.M. Lilly, Modulated oscillations in three dimensions. IEEE Trans. Signal Process. 59, 5930–5943 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.M. Lilly, S.C. Olhede, Bivariate instantaneous frequency and bandwidth. IEEE Trans. Signal Process. 58(2), 591–603 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    K.V. Mardia, P.E. Jupp, Directional Statistics, Wiley Series in Probability and Statistics (Wiley, 1999)Google Scholar
  25. 25.
    G. Mazarakis, J. Avaritsiotis, A prototype sensor node for footstep detection. in Proceedings of 2nd European Workshop Wireless Sensor Networks, pp. 415–418 (2005)Google Scholar
  26. 26.
    A. Merrifield, An investigation of mathematical models for animal group movement, using classical and statistical approaches. Ph.D. Thesis, The University of Sydney (2006)Google Scholar
  27. 27.
    F. Meysel, Map-based change detection (MBCD) in urban traffic scenes. in Proceedings of Joint Urban Remote Sensing Event, pp. 1–4 (2011)Google Scholar
  28. 28.
    G. Miller, H. Pursey, On the partition of energy between elastic waves in a semi-infinite solid. in Proceedings of Royal Society London, Series A, vol. 233 (1955)Google Scholar
  29. 29.
    S. Miron, N. Le Bihan, J. Mars, Quaternion-music for vector-sensor array processing. IEEE Trans. Signal Process. 57, 1316–1327 (2006)MATHGoogle Scholar
  30. 30.
    R. Narayanaswami, A. Gandhe, A. Tyurina, R.K. Mehra, Sensor fusion and feature-based human/animal classification for unattended ground sensors. in Proceedings of IEEE International Conference on Technology for Homeland Security, pp. 344–350 (2010)Google Scholar
  31. 31.
    V.D. Nguyen, M.T. Le, A.D. Do, H.H. Duong, T.D. Thai, D.H. Tran, An efficient camera-based surveillance for fall detection of elderly people. in Proceedings of IEEE 9th Conference on Industrial Electronics and Applications, pp. 994–997 (2014)Google Scholar
  32. 32.
    T.D. Popescu, D. Aiordǎchioaie, New procedure for change detection operating on Rényi entropy with application in seismic signals processing. Circuits Syst. Signal Process. 36, 1–21 (2017)Google Scholar
  33. 33.
    M.S.S. Reddy, K. Nathwani, R.M. Hegde, Probabilistic detection methods for acoustic surveillance using audio histograms. Circuits Syst. Signal Process. 34, 1977–1992 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Reddy, D. Venkatraman, A.W.H. Khong, B.P. Ng, Footstep detection and denoising using a single triaxial geophone. in Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, pp. 1171–1174 (2010)Google Scholar
  35. 35.
    H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, E. Demchuk, Nearest neighbor estimates of entropy. Am. J. Math. Manag. Sci. 23, 301–321 (2003)MathSciNetGoogle Scholar
  36. 36.
    J.C. Souyris, C. Tison, Polarimetric analysis of bistatic sar images from polar decomposition: a quaternion approach. IEEE Trans. Geosci. Remote Sens. 45(9), 2701–2713 (2007)CrossRefGoogle Scholar
  37. 37.
    J.C. Souyris, C. Tison, Quaternion neural-network-based polsar land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)CrossRefGoogle Scholar
  38. 38.
    J.Z. Stafsudd, S. Asgari, R. Hudson, K. Yao, E. Taciroglu, Localization of short-range acoustic and seismic wideband sources: algorithms and experiments. J. Sound Vib. 312, 74–93 (2008)CrossRefGoogle Scholar
  39. 39.
    G. Succi, D. Clapp, R. Gampert, G. Prado, Footstep detection and tracking. Proc. SPIE 4393, 22–29 (2001)CrossRefGoogle Scholar
  40. 40.
    G. Succi, G. Prado, R. Gampert, T. Pedersen, H. Dhaliwal, Problems in seismic detection and tracking. Proc. SPIE 4040, 165–173 (2000)CrossRefGoogle Scholar
  41. 41.
    D. Venkatraman, V. Reddy, A.W.H. Khong, On the use of the quaternion generalized Gaussian distribution for footstep detection. in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (2013)Google Scholar
  42. 42.
    D. Venkatraman, V. Reddy, A.W.H. Khong, B.P. Ng, Polarization-cum-energy metric for footstep detection using vector-sensor. in Proceedings of IEEE Internationl Conference on Technologies for Homeland Security (2011)Google Scholar
  43. 43.
    H.F. Xing, F. Li, Y.L. Liu, Wavelet denoising and feature extraction of seismic signal for footstep detection. in Proceedings of IEEE International Conference on Wavelet Analysis and Pattern Recognition, vol. 1, pp. 218–223 (2007)Google Scholar
  44. 44.
    W. Zhang, Q.J. Wu, H.B. Yin, Moving vehicles detection based on adaptive motion histogram. Digit. Signal Process. 20(3), 793–805 (2010)CrossRefGoogle Scholar
  45. 45.
    E. Zupan, M. Saje, D. Zupan, The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations