A Unified Delay, Power and Crosstalk Model for Current Mode Signaling Multiwall Carbon Nanotube Interconnects

  • Yash Agrawal
  • Mekala Girish Kumar
  • Rajeevan Chandel
Article
  • 89 Downloads

Abstract

Multiwall carbon nanotube (MWCNT) has been investigated as a potential interconnect material for future advanced technology nodes. The present paper analyzes performance of MWCNT interconnects using current mode signaling (CMS) scheme. The novelty of the present work can be stated as: Firstly, a unified model is proposed for both copper and MWCNT interconnects using finite-difference time-domain (FDTD) technique. Secondly, this model is applicable for both the conventional voltage mode signaling and more versatile CMS schemes. Furthermore, the presented FDTD-based model is valid for single as well as M-line coupled interconnects in integrated circuits. The model also incorporates CMOS gate as driver for MWCNT interconnect. Thirdly, power model using FDTD technique is investigated for the first time. Accurate formulation and computation of power dissipation in CMS MWCNT interconnects are presented in the paper. Propagation delay, power dissipation and power_delay_product (PDP) are the performance metrics considered for single-line CMS MWCNT interconnect. Crosstalk is analyzed for 2-Line and 5-Line coupled interconnects. It is investigated that CMS scheme leads to about 4 times lesser propagation delay and 2.5 times reduced PDP in MWCNT interconnect than the conventional copper interconnect for interconnect length of 4500 \(\upmu \)m. The technology node considered is 32 nm. The response of the system is accurately computed using the proposed FDTD-based model. The maximum percentage error between results obtained by the proposed analytical model and SPICE simulation model is <3% for the various test cases.

Keywords

Complementary metal-oxide semiconductor Current mode signaling Finite-difference time-domain (FDTD) Multiwall carbon nanotube (MWCNT) On-chip interconnect 

References

  1. 1.
    Y. Agrawal, R. Chandel, Crosstalk analysis of current-mode signalling-coupled RLC interconnects using FDTD technique. IETE Tech. Rev. 33(2), 148–159 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Agrawal, R. Chandel, R. Dhiman, High performance current mode receiver design for on-chip VLSI interconnects, in Proceedings of the Springer International Conference on ICA. Series: Advances in Intelligent Systems and Computing, Durgapur, vol 343, Chapter 54 (2015), pp. 527–536Google Scholar
  3. 3.
    P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–613 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Bashirullah, W. Liu, R.K. Cavin, Current-mode signaling in deep submicrometer global interconnects. IEEE Trans. Very Large Scale Integr. Syst. 11(3), 406–417 (2003)CrossRefGoogle Scholar
  5. 5.
    Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nano-materials for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009)CrossRefGoogle Scholar
  6. 6.
    Carbon Nanotube Interconnect Analyzer (CNIA), https://nanohub.org/resources/cnia
  7. 7.
    R. Chandel, S. Sarkar, R.P. Agarwal, An analysis of interconnect delay minimization by low-voltage repeater insertion. Microelectron. J. 38(4–5), 649–655 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Chernobryvko, D. De Zutter, D.V. Ginste, Nonuniform multiconductor transmission line analysis by a two-step perturbation technique. IEEE Trans. Compon. Packag. Manuf. Technol. 4(1), 1838–1846 (2014)CrossRefGoogle Scholar
  9. 9.
    M.H. Chowdhury, P. Khaled, J. Gjanci, An innovative power gating technique for leakage and ground bounce control in system-on-a-chip (SOC). Circuits Syst. Signal Process. 30(1), 89–105 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    J.P. Cui, W.S. Zhao, W.Y. Yin, J. Hu, Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Das, H. Rahaman, Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans. Nanotechnol. 10(6), 1362–1370 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Dave, M. Jain, M.S. Baghini, D. Sharma, A variation tolerant current mode signaling scheme for on-chip interconnects. IEEE Trans. Very Large Scale Integr. Syst. 21(2), 342–353 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Dhiman, R. Chandel, Dynamic crosstalk analysis in coupled interconnects for ultra-low power applications. Circuits Syst. Signal Process. 34(1), 21–40 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.K. Gowan, L.L. Biro, D.B. Jackson, Power considerations in the design of the Alpha 21264 microprocessor, in Proceedings IEEE Design Automation Conference, San Francisco (1998), pp. 726–731Google Scholar
  15. 15.
    International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net
  16. 16.
    A. Javey, J. Kong, Carbon Nanotube Electronics (Springer, Berlin, 2009)Google Scholar
  17. 17.
    W. Jin, H. Yoo, Y. Eo, Non-uniform multi-layer IC interconnect transmission line characterization for fast signal transient simulation of high-speed/high-density VLSI circuits. IEICE Trans. Electron. E82–C(6), 955–966 (1999)Google Scholar
  18. 18.
    S.M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits (TMH, New Delhi, 2003)Google Scholar
  19. 19.
    V.R. Kumar, B.K. Kaushik, A. Patnaik, Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron. Rel. 55(1), 155–163 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Li, K. Banerjee, Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Li, K. Banerjee, High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices 56(10), 2202–2214 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Li, W.Y. Yin, K. Banerjee, J.F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  23. 23.
    F. Liang, G. Wang, H. Lin, Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromag. Compat. 54(1), 133–139 (2012)CrossRefGoogle Scholar
  24. 24.
    M.K. Majumder, P.K. Das, B.K. Kaushik, Delay and crosstalk reliability issues in mixed MWCNT bundle interconnects. Microelectron. Rel. 54(11), 2570–2577 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Naeemi, J.D. Meindl, Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Devices 55(10), 2574–2582 (2008)CrossRefGoogle Scholar
  26. 26.
    S.H. Nasiri, M.K.M. Farshi, R. Faez, Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett. 31(12), 1458–1460 (2010)CrossRefGoogle Scholar
  27. 27.
    K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  28. 28.
    J.Y. Park et al., Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4(3), 517–520 (2004)CrossRefGoogle Scholar
  29. 29.
    C.R. Paul, Incorporation of terminal constraints in the FDTD analysis of transmission lines. IEEE Trans. Electromag. Compat. 36(2), 85–91 (1994)CrossRefGoogle Scholar
  30. 30.
    Predictive Technology Models (PTM), http://ptm.asu.edu
  31. 31.
    M. Sahoo, P. Ghosal, H. Rahaman, Performance modeling and analysis of carbon nanotube bundles for future VLSI circuit applications. J. Comput. Electron. 13(3), 673–688 (2014)CrossRefGoogle Scholar
  32. 32.
    T. Sakurai, A.R. Newton, A simple MOSFET model for circuit analysis. IEEE Trans. Electron Devices 38(4), 887–894 (1991)CrossRefGoogle Scholar
  33. 33.
    M.S. Sarto, A. Tamburrano, Single-conductor transmission line model of multiwall carbon nanotubes. IEEE Trans. Nanotechnol. 9(1), 82–92 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Tang, J.F. Mao, Transient analysis of lossy nonuniform transmission lines using a time-step integration method. Prog. Electromag. Res. 69, 257–266 (2007)CrossRefGoogle Scholar
  35. 35.
    Tanner EDA tools, http://www.tannereda.com
  36. 36.
    M. Tiang, J. Mao, Modeling and fast simulation of multiwalled carbon nanotube interconnects. IEEE Trans. Electromag. Compat. 57(2), 232–240 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Tuuna, E. Nigussie, J. Isoaho, H. Tenhunen, Modeling of energy dissipation in RLC current-mode signaling. IEEE Trans. Very Large Scale Integr. Syst. 20(6), 1146–1151 (2012)CrossRefGoogle Scholar
  38. 38.
    B.Q. Wei, R. Vajtai, P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(14), 3128–3131 (2001)Google Scholar
  39. 39.
    S.C. Wong, G.Y. Lee, D.J. Ma, Modeling of interconnect capacitance, delay and crosstalk in VLSI. IEEE Trans. Semicond. Manuf. 13(1), 108–111 (2000)CrossRefGoogle Scholar
  40. 40.
    F. Yuan, CMOS Current Mode Circuits for Data Communication (Springer, Berlin, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.VLSI & Embedded Systems Research GroupDhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of Technology HamirpurHamirpurIndia

Personalised recommendations