Circuits, Systems, and Signal Processing

, Volume 36, Issue 11, pp 4293–4308 | Cite as

Current-Mode Precision Full-Wave Rectifier Circuits

  • Deepak Agrawal
  • Sudhanshu MaheshwariEmail author


In this paper, a new current-mode precision full-wave rectifier is presented. The proposed circuit employs a single active element namely extra-X current conveyor and two NMOS transistors without using any passive element which is suitable for IC implementation. The circuit exhibits low input impedance and high output impedance, so it is easily cascadable. The non-idealities and the parasitics effects on the circuit are also discussed. The detailed Monte Carlo analysis and distortion study is also carried out along with supporting results. The functionality of the proposed current-mode precision full-wave rectifier is verified through PSPICE simulation using 0.25 \(\upmu \hbox {m}\) TSMC CMOS technology parameters. The proposal is also supported by experimental result.


Current-mode circuit Precision rectifier Analog signal processing EX-CCII 



The authors thank the anonymous reviewers for useful suggestions for enriching this paper. The authors are thankful to the Editor and Associate Editor for recommending this paper.


  1. 1.
    P. Beg, I.A. Khan, S. Maheshwari, Biphase amplifier based precision rectifiers using current conveyors. Int. J. Comput. Appl. 42(3), 14–18 (2012)Google Scholar
  2. 2.
    D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. Int. J. Electron. Commun. 62(2), 92–96 (2008)CrossRefGoogle Scholar
  3. 3.
    S.J.G. Gift, B. Maundy, Versatile precision full-wave rectifiers for instrumentation and measurements. IEEE Trans. Instrum. Meas. 56(5), 1703–1710 (2007)CrossRefGoogle Scholar
  4. 4.
    S.J.G. Gift, A high-performance full-wave rectifier circuit. Int. J. Electron. 87(8), 925–930 (2000)CrossRefGoogle Scholar
  5. 5.
    M.A. Ibrahim, E. Yuce, S. Minaei, A new DVCC-based fully cascadable voltage-mode full-wave rectifier. J. Comput. Electron. 15(4), 1440–1449 (2016)CrossRefGoogle Scholar
  6. 6.
    A.A. Khan, M. Abouel-ela, M.A. Al-Turraigi, Current-mode precision rectification. Int. J. Electron. Commun. 79(6), 853–859 (1995)CrossRefGoogle Scholar
  7. 7.
    F. Khateb, J. Vavra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19(3), 437–445 (2010)Google Scholar
  8. 8.
    J. Koton, A. Lahiri, N. Herencsar, K. Vrba, Current-mode dual-phase precision full-wave rectifier using current-mode two-cell winner-takes-all (WTA) circuit. Radioengineering 20(2), 428–432 (2011)Google Scholar
  9. 9.
    J. Koton, N. Herenscar, K. Vrba, Current and voltage conveyors in current and voltage-mode precision full-wave rectifiers. Radioengineering 20(1), 19–24 (2011)Google Scholar
  10. 10.
    M. Kumngern, K. Dejhan, High frequency and high precision CMOS full-wave rectifier. Int. J. Electron. 93(3), 185–199 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Kumngern, New versatile precision rectifier. IET Circuits Device Syst. 8(2), 141–151 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Maheshwari, D. Agrawal, High performance voltage-mode tunable all-pass section. J. Circuits Syst. Comput. 24(6), 1–12 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Maheshwari, M.S. Ansari, P. Beg, High performance precision rectifier for analog signal processing. Int. J. Comput. Appl. 47(14), 26–29 (2012)Google Scholar
  14. 14.
    S. Maheshwari, Current controlled precision rectifier circuits. J. Circuits Syst. Comput. 16(1), 129–138 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Maheshwari, Current conveyor all-pass section: brief review and novel solution. Sci. World J. article ID 429391, 1–6 (2013)Google Scholar
  16. 16.
    S. Minaei, E. Yuce, A new full-wave rectifier circuit employing single dual-X current conveyor. Int. J. Electron. 95(8), 777–784 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Sagbas, S. Minaei, U.E. Ayten, Component reduced current-mode full-wave rectifier circuits using single active component. IET Circuits Device Syst. 10(1), 1–11 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Shaterian, C.M. Twigg, J. Azhari, An MTL-based configurable block for current-mode nonlinear analog computation. IEEE Trans. Circuits Syst. II Expr. Briefs 60(9), 587–591 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Toumazou, F.J. Lidgey, Wide-band precision rectification. IEE Proc. G Circuits Devices Syst. 134(1), 7–15 (1987)CrossRefGoogle Scholar
  20. 20.
    C. Toumazou, F.J. Lidgey, S. Chattong, High frequency current conveyor precision full-wave rectifier. Electron. Lett. 30(10), 745–746 (1994)CrossRefGoogle Scholar
  21. 21.
    Z. Wang, Full-wave precision rectification that is performed in current domain and very suitable for CMOS implementation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 39(6), 456–462 (1992)CrossRefGoogle Scholar
  22. 22.
    E. Yuce, S. Minaei, O. Cicekoglu, Full wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electronics EngineeringZ.H.C.E.T., Aligarh Muslim UniversityAligarhIndia

Personalised recommendations