Circuits, Systems, and Signal Processing

, Volume 36, Issue 9, pp 3477–3490 | Cite as

A 2.4/5.2/5.8 GHz Triple-Band Common-Gate Cascode CMOS Low-Noise Amplifier

  • Chun-Chieh Chen
  • Yen-Chun Wang


This paper presents a 2.4/5.2/5.8 GHz, triple-band, common-gate, cascode CMOS low-noise amplifier using only a band-selection switch that alters the equivalent LC tank and thus the resonant frequencies of the tank. The aspect ratio of the cascode MOS device is designed to optimize the gain–bandwidth product of the proposed low-noise amplifier so that wideband performance can be achieved. The proposed triple-band low-noise amplifier is suitable for use in the frequency-partitioning scheme that utilizes a wideband frontend with three medium-sized bands, to implement wideband RF frontend architecture for software-defined radio. Theoretical analyses of the input impedance, noise factor, and three resonant frequencies of the switched LC tank that show good agreement with the experimental results are also presented. The measured 3-dB bandwidths of the three bands of 2.4, 5.2, and 5.8 GHz are 720, 1080, and 910 MHz, respectively, which demonstrate the feasibility of the proposed design methodology. The proposed low-noise amplifier provides forward gains (\(\left| S_{21} \right| \)) of 10.6, 17.4, and 15.6 dB, with minimum noise figures of 4.96, 5.16, and 5.57 dB, for the three operation bands. A test chip with a die area of \(0.64\,\hbox {mm}^{2}\) was fabricated using a 0.18-\(\upmu \hbox {m}\) RF-CMOS process. The proposed triple-band low-noise amplifier consumes only 3.6 mW, excluding the buffer, from a supply voltage of 1.8 V.


Low-noise amplifier (LNA) Triple-band Gain–bandwidth product Common-gate 


  1. 1.
    C.W. Ang, Y. Zheng, C.H. Heng, A multi-band CMOS low noise amplifier for multi-standard wireless receivers, in IEEE International Symposium on Circuits and Systems (2007), pp. 2802–2805Google Scholar
  2. 2.
    C.C. Chen, Y.C. Wang, A dual-wideband CMOS LNA using gain-bandwidth product optimization technique. Circuits Syst. Signal Process. (2016). doi: 10.1007/s00034-016-0322-7 Google Scholar
  3. 3.
    G.Z. Fatin, Z.D. Koozehkanani, H. Sjöland, A 90 nm CMOS \(+11\) dBm IIP3 4 mW dual-band LNA for cellular handsets. IEEE Microwave Wirel. Compon. Lett. 20(9), 513–515 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Gao, Y.J. Zheng, B.L. Ooi, 0.18 \(\mu \)m CMOS dual-band UWB LNA with interference rejection. Electron. Lett. 43(20), 1096–1098 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Hashemi, A. Hajimiri, Concurrent multiband low-noise amplifiers—theory, design, and applications. IEEE Trans. Microwave Theory Tech. 50(1), 288–301 (2002)CrossRefGoogle Scholar
  6. 6.
    Z.Y. Huang, C.C. Hung, CMOS dual-band low-noise amplifier for world-wide WiMedia ultra-wideband wireless personal area networks system, in Proceedings of Asia-Pacific Microwave Conference (2010), pp. 334–337Google Scholar
  7. 7.
    P. Heydari, Design and analysis of a performance-optimized CMOS UWB distributed LNA. IEEE J. Solid State Circuits 42(9), 1892–1905 (2007)CrossRefGoogle Scholar
  8. 8.
    H.-S. Jhon, I. Song, J. Jeon, H. Jung, M. Koo, B.-G. Park, J.D. Lee, H. Shin, 8 mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application. Electron. Lett. 44(23), 1353–1354 (2008)CrossRefGoogle Scholar
  9. 9.
    H.B. Kia, A.K. A’ain, I. Grout, I. Kamisian, A reconfigurable low-noise amplifier using a tunable active inductor for multistandard receivers. Circuits Syst. Signal Process. 32, 979–992 (2013)CrossRefGoogle Scholar
  10. 10.
    L.H. Lu, H.H. Hsieh, Y.S. Wang, A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier. IEEE Microwave Wirel. Compon. Lett. 15(10), 685–687 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Lee, C. Nguyen, A concurrent tri-band low-noise amplifier with a novel tri-band load resonator employing feedback notches. IEEE Trans. Microwave Theory Tech. 61(12), 4195–4208 (2013)CrossRefGoogle Scholar
  12. 12.
    T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)Google Scholar
  13. 13.
    N.M. Neihart, J. Brown, X. Yu, A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network. IEEE Trans. Circuits Syst. I Regul. Pap. 59(8), 1743–1751 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G.M. Sung, X.J. Zhang, A 2.4-GHz/5.25-GHz CMOS variable gain low noise amplifier using gate voltage adjustment, in IEEE International Midwest Symposium on Circuits and Systems (2013), pp. 776–779Google Scholar
  15. 15.
    X. Tang, F. Huang, Y. Zhang, S. Lin, Design of a reconfigurable low noise amplifier for IMT-A and UWB systems, in IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (2012), pp. 1–4Google Scholar
  16. 16.
    F. Tzeng, A. Jahanian, P. Heydari, A multiband inductor-reuse CMOS low-noise amplifier. IEEE Trans. Circuits Syst. II Express Briefs 55(3), 209–213 (2008)CrossRefGoogle Scholar
  17. 17.
    A.K. Tyagi, R.V. Rajakumar, A wideband RF frontend architecture for software defined radio. Circuits Syst. Signal Process. 30, 689–704 (2011)CrossRefGoogle Scholar
  18. 18.
    M.B. Vahidfar, O. Shoaei, A triple mode LNA enhanced by dual feedback loops for multi standard receivers, in IEEE International Midwest Symposium on Circuits and Systems (2006), pp. 159–162Google Scholar
  19. 19.
    J. Wu, P. Jiang, D. Chen, J. Zhou, A dual-band GNSS RF front end with a pseudo-differential LNA. IEEE Trans. Circuits Syst. II Express Briefs 58(3), 134–138 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Xuan, K.F. Tsang, W.C. Lee, S.C. Lee, 0.18 \(\mu \)m CMOS dual-band low-noise amplifier for ZigBee development. Electron. Lett. 46(1), 85–86 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronic EngineeringChung-Yuan Christian UniversityTaoyuan CityTaiwan

Personalised recommendations