Circuits, Systems, and Signal Processing

, Volume 36, Issue 7, pp 2742–2766 | Cite as

Improving Energy Efficiency of OFDM Using Adaptive Precision Reconfigurable FFT

  • Hatam Abdoli
  • Hooman Nikmehr
  • Naser Movahedinia
  • Florent de Dinechin


Being an essential issue in digital systems, especially battery-powered devices, energy efficiency has been the subject of intensive research. In this research, a multi-precision FFT module with dynamic run-time reconfigurability is proposed to trade off accuracy with the energy efficiency of OFDM in an SDR-based architecture. To support variable-size FFT, a reconfigurable memory-based architecture is investigated. It is revealed that the radix-4 FFT has the minimum computational complexity in this architecture. Regarding implementation constraints such as fixed-width memory, a noise model is exploited to statistically analyze the proposed architecture. The required FFT word-lengths for different criteria—namely BER, modulation scheme, FFT size, and SNR—are computed analytically and confirmed by simulations in AWGN and Rayleigh fading channels. At run-time, the most energy-efficient word-length is chosen and the FFT is reconfigured until the required application-specific BER is met. Evaluations show that the implementation area and the number of memory accesses are reduced. The results obtained from synthesizing basic operators of the proposed design on an FPGA show energy consumption experienced a saving of over 80 %.


Quantization noise Reconfigurable design FFT OFDM BER Energy efficiency 


  1. 1.
    R. Airoldi, F. Campi, M. Cucchi, D. Revanna, O. Anjum, J. Nurmi, Design and implementation of a power-aware FFT core for OFDM-based DSA-enabled cognitive radios. J. Signal Process. Syst. 78(3), 257–265 (2015). doi: 10.1007/s11265-014-0894-z CrossRefGoogle Scholar
  2. 2.
    A.S. Beulet Paul, S. Raju, R. Janakiraman, Low power reconfigurable FP-FFT core with an array of folded DA butterflies. EURASIP J. Adv. Signal Process. 2014(1), 1–17 (2014)CrossRefGoogle Scholar
  3. 3.
    S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala, Optimization of Number Representation, Handbook of Signal Processing Systems (Springer, New York, 2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    H. Bogucka, P. Kryszkiewicz, A. Kliks, Dynamic spectrum aggregation for future 5G communications. IEEE Commun. Mag. 53(5), 35–43 (2015). doi: 10.1109/MCOM.2015.7105639 CrossRefGoogle Scholar
  5. 5.
    G. Caffarena, C. Carreras, J.A. López, Á. Fernández, SQNR estimation of fixed-point DSP algorithms. EURASIP J. Adv. Signal Process. 2010, 21:1–21:12 (2010). doi: 10.1155/2010/171027 CrossRefzbMATHGoogle Scholar
  6. 6.
    C.H. Chang, C.L. Wang, Y.T. Chang, A novel memory-based FFT processor for DMT/OFDM applications. IEEE Int. Conf. Acoust. Speech Signal Process. 4, 1921–1924 (1999). doi: 10.1109/ICASSP.1999.758300 Google Scholar
  7. 7.
    W.H. Chang, T.Q. Nguyen, On the fixed-point accuracy analysis of FFT algorithms. IEEE Trans. Signal Process. 56(10), 4673–4682 (2008). doi: 10.1109/TSP.2008.924637 MathSciNetCrossRefGoogle Scholar
  8. 8.
    K.H. Chen, A low-memory-access length-adaptive architecture for \(2^n\)-point FFT. Circuits Syst. Signal Process. 34(2), 459–482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Y. Chen, Y.C. Tsao, Y.W. Lin, C.H. Lin, C.Y. Lee, An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II Exp. Briefs 55(2), 146–150 (2008)CrossRefGoogle Scholar
  10. 10.
    I. Cho, T. Patyk, D. Guevorkian, J. Takala, S. Bhattacharyya, Pipelined FFT for wireless communications supporting 128-2048 / 1536-point transforms, in Global Conference on Signal and Information Processing (IEEE GlobalSIP), pp. 1242–1245 (2013) doi: 10.1109/GlobalSIP.2013.6737133
  11. 11.
    T. Cho, H. Lee, J. Park, C. Park, A high-speed low-complexity modified radix-\(2^5\) FFT processor for gigabit WPAN applications, in IEEE International Symposium of Circuits and Systems (ISCAS) pp. 1259–1262 (2011)Google Scholar
  12. 12.
    F. Cladera, M. Gautier, O. Sentieys, Energy-aware computing via adaptive precision under performance constraints in OFDM wireless receivers, in IEEE Computer Society Annual Symposium on VLSI, pp. 591–596 (2015). doi: 10.1109/ISVLSI.2015.88
  13. 13.
    F. de Dinechin, B. Pasca, Designing custom arithmetic datapaths with FloPoCo. IEEE Design Test Comput. 28(4), 18–27 (2011). doi: 10.1109/MDT.2011.44 CrossRefGoogle Scholar
  14. 14.
    R. Duan, M. Bi, C. Gniady, Exploring memory energy optimizations in smartphones, in Green Computing Conference and Workshops (IGCC), pp. 1–8 (2011)Google Scholar
  15. 15.
    D. Feng, C. Jiang, G. Lim, L.J. Cimini, G. Feng, G.Y. Li, A survey of energy-efficient wireless communications. IEEE Commun. Surv. Tutor. 15(1), 167–178 (2013)CrossRefGoogle Scholar
  16. 16.
    M.L. Ferreira, J.C. Ferreira, Reconfigurable NC-OFDM processor for 5G communications, in IEEE 13th International Conference on Embedded and Ubiquitous Computing, pp. 199–204 (2015). doi: 10.1109/EUC.2015.29
  17. 17.
    M.L. Ferreira, A. Barahimi, J.C. Ferreira, Reconfigurable FPGA-based FFT processor for cognitive radio applications, in International Symposium on Applied Reconfigurable Computing (Springer, 2016), pp. 223–232Google Scholar
  18. 18.
    M.P. Fitz, J.P. Seymour, On the bit error probability of QAM modulation. Int. J. Wirel. Inf. Netw. 1(2), 131–139 (1994)CrossRefGoogle Scholar
  19. 19.
    Y. Gijung, J. Yunho, Scalable FFT processor for MIMO-OFDM based SDR systems, in 5th IEEE International Symposium on Wireless Pervasive Computing (ISWPC), pp. 517–521 (2010)Google Scholar
  20. 20.
    X. Guan, Y. Fei, H. Lin, Hierarchical design of an application-specific instruction set processor for high-throughput and scalable FFT processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(3), 551–563 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Haykin, Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005). doi: 10.1109/JSAC.2004.839380 CrossRefGoogle Scholar
  22. 22.
    J. He, J. Wang, X. Xu, Word-length optimization of a pipelined FFT processor, in IEEE International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 5485–5488 (2011)Google Scholar
  23. 23.
    S.J. Huang, S.G. Chen, A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems. IEEE Trans. Circuits Syst. I Reg. Pap. 59(8), 1752–1765 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    N. Janakiraman, P. Nirmalkumar, S.M. Akram, Coarse grained ADRES based MIMO-OFDM transceiver with new radix-\(2^5\) pipeline FFT/IFFT processor. Circuits Syst. Signal Process. 34(3), 851–873 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Johansson, S. He, P. Nilsson, Wordlength optimization of a pipelined FFT processor, in Proceedings of the 42nd Midwest Symposium on Circuits and Systems, pp. 501–503 (1999)Google Scholar
  26. 26.
    J. Kim, S. Yoshizawa, Y. Miyanaga, Dynamic wordlength calibration to reduce power dissipation in wireless OFDM systems, in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 628–631 (2010). doi: 10.1109/APCCAS.2010.5774944
  27. 27.
    J. Kim, S. Yoshizawat, Dynamic wordlength calibration for energy reduction FFT processors in wireless LAN, in IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4 (2011)Google Scholar
  28. 28.
    P. Korkmaz, B.E.S. Akgul, K.V. Palem, Energy, performance, and probability tradeoffs for energy-efficient probabilistic CMOS circuits. IEEE Trans. Circuits Syst. I Reg. Pap. 55(8), 2249–2262 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Lee, A. Gerstlauer, Fine grain precision scaling for datapath approximations in digital signal processing systems, in FIP/IEEE International Conference on Very Large Scale Integration-System on a Chip (Springer, 2015), pp. 119–143. doi: 10.1007/978-3-319-23799-2
  30. 30.
    T.Y. Lee, C.H. Huang, W.C. Chen, M.J. Liu, A low-area dynamic reconfigurable MDC FFT processor design. Microprocess. Microsyst. 42, 227–234 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Menard, O. Sentieys, DSP code generation with optimized data word-length selection, in International Workshop on Software and Compilers for Embedded Systems (Springer, 2004), pp. 214–228Google Scholar
  32. 32.
    R. Nehmeh, D. Menard, E. Nogues, A. Banciu, T. Michel, R. Rocher, Fast integer word-length optimization for fixed-point systems. J. Signal Process. Syst. (2015). doi: 10.1007/s11265-015-0990-8 Google Scholar
  33. 33.
    H.N. Nguyen, D. Menard, O. Sentieys, Dynamic precision scaling for low power WCDMA receiver, in IEEE International Symposium on Circuits and Systems, pp. 205–208 (2009)Google Scholar
  34. 34.
    D. Novo, B. Bougard, A. Lambrechts, L.V.D. Perre, F. Catthoor, L. der Perre, F. Catthoor, Scenario-based fixed-point data format refinement to enable energy-scalable software defined radios, in Proceedings of the Conference on Design, Automation and Test in Europe, DATE’08 (ACM, New York, 2008), pp. 722–727. doi: 10.1145/1403375.1403550
  35. 35.
    A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, 3rd edn. (Prentice-Hall, Upper Saddle River, 2009)zbMATHGoogle Scholar
  36. 36.
    B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd edn. (Oxford University Press, New York, 2010)Google Scholar
  37. 37.
    T. Patyk, D. Guevorkian, T. Pitkanen, P. Jaaskelainen, J. Takala, Low-power application-specific FFT processor for LTE applications, in International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 28–32 (2013). doi: 10.1109/SAMOS.2013.6621102
  38. 38.
    A. Pedram, J.D. McCalpin, A. Gerstlauer, A highly efficient multicore floating-point FFT architecture based on hybrid linear algebra/FFT cores. J. Signal Process. Syst. 77(1–2), 169–190 (2014). doi: 10.1007/s11265-014-0896-x CrossRefGoogle Scholar
  39. 39.
    J.G. Proakis, Digital Signal Processing: Principles, Algorithms, and Applications, 3rd edn. (Prentice-Hall, Upper Saddle River, 2000)Google Scholar
  40. 40.
    J.G. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw Hill, New York, 2007)Google Scholar
  41. 41.
    R. Rajbanshi, A.M. Wyglinski, G.J. Minden, An efficient implementation of NC-OFDM transceivers for cognitive radios, in 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp. 1–5 (2006). doi: 10.1109/CROWNCOM.2006.363452
  42. 42.
    R. Rocher, D. Menard, P. Scalart, O. Sentieys, Analytical approach for numerical accuracy estimation of fixed-point systems based on smooth operations. IEEE Trans. Circuits Syst. I Reg. Pap. 59(10), 2326–2339 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, D. Grossman, EnerJ: approximate data types for safe and general low-power computation, in Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’11 (ACM, New York, 2011), pp. 164–174. doi: 10.1145/1993498.1993518
  44. 44.
    V. Sarada, T. Vigneswaran, Reconfigurable FFT processor—a broader perspective survey. Int. J. Eng. Technol. 5(2), 949–956 (2013)Google Scholar
  45. 45.
    M.K. Simon, M.S. Alouini, Digital Communication Over Fading Channels (Wiley, Hoboken, 2005)Google Scholar
  46. 46.
    S. Stotas, A. Nallanathan, On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Trans. Wirel. Commun. 11(1), 97–107 (2012)CrossRefGoogle Scholar
  47. 47.
    C.H. Van Berkel, Multi-core for mobile phones, in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1260–1265 (2009)Google Scholar
  48. 48.
    C. Vennila, G. Lakshminarayanan, S.B. Ko, Dynamic partial reconfigurable FFT for OFDM based communication systems. Circuits Syst. Signal Process. 31(3), 1049–1066 (2012). doi: 10.1007/s00034-011-9367-9 CrossRefGoogle Scholar
  49. 49.
    L. Wilhelmsson, I. Diaz, T. Olsson, V. Owall, Analysis of a novel low complex SNR estimation technique for OFDM systems, in IEEE Wireless Communications and Networking Conference (WCNC), pp. 1646–1651 (2011)Google Scholar
  50. 50.
    M. Woh, S. Mahlke, T. Mudge, Mobile supercomputers for the next generation cell phone. Computer 43(1), 81–85 (2010)CrossRefGoogle Scholar
  51. 51.
    H. Xiao, A. Pan, Y. Chen, X. Zeng, Low-cost reconfigurable VLSI architecture for fast Fourier transform. IEEE Trans. Consum. Electron 54(4), 1617–1622 (2008). doi: 10.1109/TCE.2008.4711210 CrossRefGoogle Scholar
  52. 52.
  53. 53.
    C. Yang, Y.Z. Xie, L. Chen, H. Chen, Y. Deng, Design of a configurable fixed-point FFT processor, in IET International Radar Conference, pp. 1–4 (2015)Google Scholar
  54. 54.
    S. Yoshizawa, Y. Miyanaga, Use of a variable wordlength technique in an OFDM receiver to reduce energy dissipation. IEEE Trans. Circuits Syst. I Reg. Pap. 55(9), 2848–2859 (2008). doi: 10.1109/TCSI.2008.920098 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hatam Abdoli
    • 1
  • Hooman Nikmehr
    • 1
  • Naser Movahedinia
    • 1
  • Florent de Dinechin
    • 2
  1. 1.Department of Computer Architecture, Faculty of Computer EngineeringUniversity of IsfahanIsfahanIran
  2. 2.Laboratoire CITI / INSA-Lyon Batiment ClaudeVilleurbanneFrance

Personalised recommendations