Circuits, Systems, and Signal Processing

, Volume 36, Issue 5, pp 2031–2049 | Cite as

Novel Multiplierless Wideband Comb Compensator with High Compensation Capability

  • Gordana Jovanovic Dolecek
  • Ricardo Garcia Baez
  • Gerardo Molina Salgado
  • Jose M. de la Rosa


This paper proposes a novel multiplierless comb compensation filter, which has the absolute passband deviation less than 0.1 dB in the wide passband. The compensator consists of a cascade of two simple filter sections, both operating at a low rate. The magnitude characteristics of the two-component filters are synthesized as sinewave functions, in which the main design parameters correspond to the amplitudes of sinewave functions. A systematic procedure is followed to select synthesis parameters, which depend only on the number of cascaded comb filters. In particular, they are independent of the decimation factor. Comparisons with comb compensators from the literature illustrate the benefits of the proposed design.


Decimation Aliasing Comb filter Passband droop Compensator Sinewave functions 


  1. 1.
    A. Fernandez-Vazquez, G. Jovanovic Dolecek, A general method to design GCF compensation filter. IEEE Trans. Circuits Syst. II Express Brief 56, 409–413 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Fernandez-Vazquez, G. Dolecek Jovanovic, Maximally flat CIC compensation filter: design and multiplierless implementation. IEEE Trans. Circuits Syst. II: Express Brief 54, 113–117 (2012)CrossRefGoogle Scholar
  3. 3.
    F.J. Harris, Multirate Signal Processing for Communication Systems (Prentice Hall, New Jersey, 2004)Google Scholar
  4. 4.
    E. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust. Speech Signal Process. ASSP 29, 155–162 (1981)CrossRefGoogle Scholar
  5. 5.
    G. Jovanovic Dolecek, Simple wideband CIC compensator. Electron. Lett. 45, 1270–1272 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Jovanovic Dolecek, A. Fernandez-Vazquez, Trigonometrical approach to design a simple wideband comb compensator. Int. J. Electron. Commun. 68, 437–441 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Jovanovic Dolecek, F. Harris, Design of wideband CIC compensator filter for a digital IF receiver. Digit. Signal Proc. 19, 827–837 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Kim, W.C. Lee, S. Ahn, S. Cho, Design of CIC roll-off compensation filter in a W-CDMA digital IF receiver. Digit. Signal Process. 16, 846–854 (2006)CrossRefGoogle Scholar
  9. 9.
    G. Molnar, M. Vucic, Closed-form design of CIC compensators based on maximally flat error criterion. IEEE Trans. Circuits Syst. II Express Brief 58, 926–930 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Pecotic, G. Molnar, M. Vucic, Design of CIC compensators with SPT coefficients based on interval analysis. Proceedings of 35th IEEE International Convention MIPRO 2012, pp. 123–128 (2012)Google Scholar
  11. 11.
    D.E.T. Romero, G. Jovanovic Dolecek, Application of amplitude transformation for compensation of comb decimation filters. Electron. Lett. 49, 985–987 (2013)CrossRefGoogle Scholar
  12. 12.
    K.S. Yeung, S.C. Chan, The design and multiplier-less realization of software radio receivers with reduced system delay. IEEE Trans. Circuits Syst. I: Regul. Pap. 51, 2444–2459 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gordana Jovanovic Dolecek
    • 1
  • Ricardo Garcia Baez
    • 1
  • Gerardo Molina Salgado
    • 1
  • Jose M. de la Rosa
    • 2
  1. 1.Department of ElectronicsInstitute INAOE PueblaPueblaMexico
  2. 2.Institute IMSE-CNM (CSIC)SevilleSpain

Personalised recommendations