Advertisement

Circuits, Systems, and Signal Processing

, Volume 36, Issue 1, pp 219–246 | Cite as

Sparsity-Based Direct Data Domain Space-Time Adaptive Processing with Intrinsic Clutter Motion

  • Zhaocheng YangEmail author
  • Yuliang Qin
  • Rodrigo C. de Lamare
  • Hongqiang Wang
  • Xiang Li
Article

Abstract

In this paper, we propose a sparsity-based direct data domain space-time adaptive processing (D3-STAP) algorithm for airborne radar that considers the intrinsic clutter motion (ICM). The proposed D3-STAP scheme models the received returns in the presence of ICM as a sparse measurement model. Then, we derive the principle of the sparsity-based D3-STAP that uses the focal underdetermined system solution (FOCUSS) method. The proposed D3-STAP algorithm estimates the clutter covariance matrix by a Hadamard product of the covariance matrix taper (CMT) and the clutter covariance matrix estimate with the FOCUSS technique. In addition, we develop a CMT adaptation approach for the proposed D3-STAP algorithm to automatically select the best CMT. Simulation results show that the proposed algorithm outperforms the existing D3-STAP using the least-squares technique and the sparsity-based D3-STAP algorithm without CMT.

Keywords

Space-time adaptive processing Covariance matrix taper Intrinsic clutter motion Spatio-temporal sparsity  Direct data domain 

Notes

Acknowledgments

This work was funded in part by National Natural Science Foundation of China under Grant 61401478.

References

  1. 1.
    E. Aboutanios, B. Mulgrew, A STAP algorithm for radar target detection in heterogeneous environments, in IEEE Workshop Statist. Signal Process.(2005), pp. 966–971Google Scholar
  2. 2.
    E. Aboutanios, B. Mulgrew, Hybrid detection approach for STAP in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 46, 1021–1033 (2010)CrossRefGoogle Scholar
  3. 3.
    S.F. Cotter, B.D. Rao, K. Engan, K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53, 2477–2488 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.-F. Degurse, L. Savy, S. Marcos, Reduced-rank STAP for target detection in heterogeneous environments. IEEE Trans. Aerosp. Electron. Syst. 50, 1153–1162 (2014)CrossRefGoogle Scholar
  5. 5.
    J.-F. Degurse, L. Savy, S. Marcos, J.-P. Molini, Deterministic aided STAP for target detection in heterogeneous situations. Int. J. Antennas Propagat. (2013). doi: 10.1155/2013/826935
  6. 6.
    M. Elad, Why simple shrinkage is still relevant for redundant representations? IEEE Trans. Inf. Theory 52, 5559–5569 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.R. Guerci, Space-Time Adaptive Processing for Radar (Artech House, London, 2003)Google Scholar
  8. 8.
    J.R. Guerci, Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Process. 47, 977–985 (1999)CrossRefGoogle Scholar
  9. 9.
    J.R. Guerci, E.J. Baranoski, Knowledge-aided adaptive radar at DARPA: an overview. IEEE Signal Process. Mag. 23, 41–50 (2006)CrossRefGoogle Scholar
  10. 10.
    J.R. Guerci, J.S. Bergin, Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans. Aerosp. Electron. Syst. 38, 152–162 (2002)CrossRefGoogle Scholar
  11. 11.
    J.S. Goldstein, I.S. Reed, Theory of partially adaptive radar. IEEE Trans. Aerosp. Electron. Syst. 33, 1309–1325 (1997)CrossRefGoogle Scholar
  12. 12.
    I.F. Gorodnitsky, B.D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45, 600–616 (1997)CrossRefGoogle Scholar
  13. 13.
    R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    R. Klemm, Principles of Space-Time Adaptive Processing (Institute of Electrical Engineering, London, UK, 2006)CrossRefGoogle Scholar
  15. 15.
    J. Li, X. Zhu, P. Stoica, M. Rangaswamy, High resolution angle-Doppler imaging for MTI radar. IEEE Trans. Aerosp. Electron. Syst. 46, 1544–1556 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Maria, J. J. Fuchs, Application of the global matched filter to STAP data an efficient algorithmic approach, in IEEE International Conference on Acoustics, Speech and Signal Processing (2006), pp.14–19Google Scholar
  17. 17.
    W.L. Mevin, G.A. Showman, An approach to knowledge-aided covariance estimation. IEEE Trans. Aerosp. Electron. Syst. 42, 1021–1042 (2006)CrossRefGoogle Scholar
  18. 18.
    J.T. Parker, L.C. Potter, A Bayesian perspective on sparse regularization for STAP post-processing, in IEEE Radar Conference (2010), pp. 1471–1475Google Scholar
  19. 19.
    B.D. Rao, K. Engan, S.F. Cotter, J. Palmer, K. Kreutz-Delgado, Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 51, 760–770 (2003)CrossRefGoogle Scholar
  20. 20.
    J.R. Roman, M. Rangaswamy, D.W. Davis, Q. Zhang, B. Himed, J.H. Michels, Parametric adaptive matched filter for airborne radar applications. IEEE Trans. Aerosp. Electron. Syst. 36, 677–692 (2000)CrossRefGoogle Scholar
  21. 21.
    S. Sen, OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity. IEEE Trans. Signal Process. 61, 118–130 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Sun, H. Meng, Y. Wang, X. Wang, Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 91, 2222–2236 (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    I.W. Selesnick, S.U. Pillai, K.Y. Li, B. Himed, Angle-Doppler processing using sparse regularization, in IEEE International Conference on Acoustics, Speech and Signal Processing (2010), pp. 2750–2753Google Scholar
  24. 24.
    T.K. Sarkar, H. Wang, S. Park, R. Adve, J. Koh, K. Kim, Y. Zhang, M.C. Wicks, R.D. Brown, A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. Antennas Propagat. 49, 91–103 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    K. Sun, H. Zhang, G. Li, H. Meng, X. Wang, A novel STAP algorithm using sparse recovery technique, in IGARSS (2009), pp. 336–339Google Scholar
  26. 26.
    J. Ward, Space-Time Adaptive Processing for Airborne Radar. Technical Report (MIT Lincoln laboratory, Lexington, MA, 1994). 1015Google Scholar
  27. 27.
    M.C. Wicks, M. Rangaswamy, R. Adve, T.B. Hale, Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Process. Mag. 23, 51–65 (2006)CrossRefGoogle Scholar
  28. 28.
    Y. Wu, J. Tang, Y. Peng, On the essence of knowledge-aided clutter covariance estimate and its convergence. IEEE Trans. Aerosp. Electron. Syst. 47, 569–585 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Xia, Y. Zheng, Q. Wan, X. Wang, Adaptive regularized FOCUSS algorithm, in IEEE Radar Conference (2007), pp. 282–284Google Scholar
  30. 30.
    E. Yang, R. Adve, J. Chun, J. Chun, Hybrid direct data domain sigma-delta space-time adaptive processing algorithm in non-homogeneous clutter. IET Radar Sonar Navig. 4, 611–625 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Yang, X. Li, H. Wang, Performance analysis of STAP algorithms based on fast sparse recovery techniques. Progr. Electromagn. Res. B 41, 251–268 (2012)CrossRefGoogle Scholar
  32. 32.
    Z. Yang, X. Li, H. Wang, W. Jiang, Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal Process. 93, 3567–3577 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Yang, X. Li, H. Wang, W. Jiang, On clutter sparsity analysis in space-time adaptive processing airborne radar. IEEE Geosci Remote Sens. Lett. 10, 1214–1218 (2013)CrossRefGoogle Scholar
  34. 34.
    Z. Yang, X. Li, H. Wang, L. Nie, Sparsity-based space-time adaptive processing using complex-valued homotopy technique for airborne radar. IET Signal Process. 8, 552–564 (2014)CrossRefGoogle Scholar
  35. 35.
    Z. Yang, R.C. de Lamare, X. Li, \(L_1\)-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar. IEEE Trans. Signal Process. 60, 674–686 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Z. Yang, R.C. de Lamare, X. Li, Sparsity-aware space-time adaptive processing algorithms with \(L_1\)-norm regularization for airborne radar. IET Signal Process. 6, 413–423 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Zatman, Comments on Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Process. 48, 1796–1800 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhaocheng Yang
    • 1
    Email author
  • Yuliang Qin
    • 2
  • Rodrigo C. de Lamare
    • 3
  • Hongqiang Wang
    • 2
  • Xiang Li
    • 2
  1. 1.College of Information EngineeringShenzhen UniversityShenzhenChina
  2. 2.Research Institute of Space Electronics, Electronics Science and Engineering SchoolNational University of Defense TechnologyChangshaChina
  3. 3.Communications Research Group, Department of ElectronicsUniversity of YorkYorkUK

Personalised recommendations