Circuits, Systems, and Signal Processing

, Volume 34, Issue 8, pp 2643–2665 | Cite as

EEG Spike Detection Technique Using Output Correlation Method: A Kalman Filtering Approach

Article

Abstract

This correspondence presents a technique for the electroencephalogram (EEG) spike enhancement and detection, which uses the Kalman filtering (KF) approach based on the output correlation method for the nonstationary signal enhancement. We describe the nonstationary EEG signal in terms of the general Markov model, in which the parameters are considered to be time-varying. In the proposed methodology, neither the process and measurement noise statistics nor the initial Kalman blending factor are stringently required. The EEG epileptic spikes (ESs) are pre-emphasized using the output correlation method, and subsequently, the detection is performed using the decision threshold based on the output of same adaptive filter. We have tested the proposed scheme on the synthetic EEG signal corrupted with randomly occurring triangular spikes. The presented simulation results manifest significant improvement in the signal-to-noise ratio (SNR) due to the modified estimation of time-varying parameters of the general Markov model, which in turn leads to the alleviated number of false-positives (FPs). It is apparent that the real-time EEG signal (rat data) can be analyzed using the proposed EEG epileptic spike enhancement and detection adaptive scheme, which outperforms the conventional KF technique under the different SNR conditions. At 10 dB SNR, the output correlation method provides approximately 40 % reduction in FPs for the triangular spikes in synthetic EEG signal and approximately 27.5 % reduction in FPs for ESs in the rat data as compared to the conventional KF scheme.

Keywords

Electroencephalogram (EEG) Epileptic spikes (ESs) Kalman filter (KF) Correlation Time-varying environments/channels  Adaptive signal processing Markov model 

References

  1. 1.
    N. Acir, I. Oztura, M. Kuntalp, B. Balkan, C. Guzelis, Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans. Biomed. Eng. 52(1), 30–40 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Arnold, W.H.R. Miltner, H. Witte, R. Bauer, C. Braun, AR adaptive modeling of nonstationary time series by means of Kalman filtering. IEEE Trans. Biomed. Eng. v 45(5), 553–562 (1998)CrossRefGoogle Scholar
  3. 3.
    S. Aydin, Comparison of power spectrum predictors in computing coherence functions for intracortical EEG signals. Ann. Biomed. Eng. 37(1), 192–200 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Bodenstein, H.M. Praetorious, Feature extraction from the electroencephalogram by adaptive segmentation. Proc. IEEE 65(5), 642–652 (1977)CrossRefGoogle Scholar
  5. 5.
    S. Dandapat, G.C. Ray, Spike detection in biomedical signal using mid-prediction filter. IEEE Trans. Sign. Process. 42(9), 2276–2279 (1994)CrossRefGoogle Scholar
  6. 6.
    P.J. Durka, Adaptive time-frequency parameterization of epileptic spikes. Phys. Rev. E 69, 051914 (2004)CrossRefGoogle Scholar
  7. 7.
    T.P. Exarchos, A.T. Tzallas, D.I. Fotiadis, S. Konitsiotis, S. Giannopoulos, EEG transient event detection and classification using association rules. IEEE Trans. Inf. Technol. Biomed. 10(3), 451–457 (2006)CrossRefGoogle Scholar
  8. 8.
    G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, H.T. Nagle, A comparison of noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1), 85–98 (1990)CrossRefGoogle Scholar
  9. 9.
    J.D. Frost, P. Kellaway, R.A. Harachovy, D.G. Glaze, E.M. Mizrahi, Changes in epileptic configuration associated with attainment of seizure control. Ann. Neurol. 20(6), 723–726 (1986)CrossRefGoogle Scholar
  10. 10.
    H. Garg, A.K. Kohli, Nonstationary-epileptic-spike detection algorithm in EEG signal using SNEOs. Biomed. Eng. Lett. 3(2), 80–86 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Godard, Channel equalization using a Kalman filter for fast data transmission. IBM J. Res. Dev. 18(3), 267–273 (1974)CrossRefMATHGoogle Scholar
  12. 12.
    M.S. Grewal, A.P. Andrew, Kalman Filtering: Theory and Practice (Prentice-Hall, Englewood Cliffs, 1993)MATHGoogle Scholar
  13. 13.
    M.S. Grewal, A.P. Andrews, Kalman Filtering Theory and Practice Using MATLAB, 3rd edn. (Wiley, New York, 2008)CrossRefGoogle Scholar
  14. 14.
    A.C. Guyton, Text Book of Medical Physiology (Saunders, Philadelphia, 1986)Google Scholar
  15. 15.
    H. Hassanpour, M. Mesbah, B. Boashash, EEG spike detection using time-frequency signal analysis. in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal (2004), vol. 5, pp. 421–424Google Scholar
  16. 16.
    C. James, M. Hagan, R. Jones, P. Bones, G. Carroll, Multireference adaptive noise canceling applied to the EEG. IEEE Trans. Biomed. Eng. 44(8), 775–779 (1997)CrossRefGoogle Scholar
  17. 17.
    S.M. Kay, Fundamentals of Statistical Signal Processing Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993)MATHGoogle Scholar
  18. 18.
    K.H. Kim, S.J. Kim, Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural network classifier. IEEE Trans. Biomed. Eng. 47(10), 1406–1411 (2000)CrossRefGoogle Scholar
  19. 19.
    M.B. Malarvili, H. Hassanpour, M. Mesbah, B. Boashash, A histogram-based electroencephalogram spike detection. in Proceedings of 8th International Symposium on Signal Processing & Its Applications (2005), pp. 207–210Google Scholar
  20. 20.
    R.K. Mehra, On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control. AC–15(2), 175–184 (1970)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R.K. Mehra, On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans. Autom. Control. AC–16(1), 12–21 (1971)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.K. Mehra, Approaches to adaptive filtering. IEEE Trans. Autom. Control. 17(5), 693–698 (1972)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    S. Mukhopadhyay, G.C. Ray, A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45(2), 1406–1411 (2000)Google Scholar
  24. 24.
    E. Niedermeyer, F.D. Silva, Electroencephalography: Basic Principals, Clinical Applications and Related Fields (Williams and Wilkins, Baltimore, 1999)Google Scholar
  25. 25.
    V.P. Oikonomou, A.T. Tzallas, D.I. Fotiadis, A Kalman filter based methodology for EEG spike enhancement. Comput. Methods Programs Biomed. 85(2), 101–108 (2007)CrossRefGoogle Scholar
  26. 26.
    C.C.C. Pang, A. Upton, C. Shine, M. Kamath, A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans. Biomed. Eng. 50(4), 521–525 (2003)CrossRefGoogle Scholar
  27. 27.
    A. Papoulis, Probab. Random Var. Stoch. Process. (McGraw-Hill, New York, 1984)Google Scholar
  28. 28.
    V. Parsa, P. Parker, Multireference adaptive noise cancellation applied to somatosensory evoked potentials. IEEE Trans. Biomed. Eng. 41(8), 792–800 (1994)CrossRefGoogle Scholar
  29. 29.
    W.D. Penny, S.J. Roberts, Dynamic models for nonstationary signal segmentation. Comput. Biomed. Res. 32(6), 483–502 (1999)CrossRefGoogle Scholar
  30. 30.
    R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: a case study on electroencephalographic signal. Am. Phys. Soc. Phys. Rev. E 65(041903), 1–14 (2002)Google Scholar
  31. 31.
    R.Q. Quiroga, T. Kreuz, P. Grassberger, Event synchronization: a simple and fast method tp measure synchronicity and time delay patterns. Am. Phys. Soc. Phys. Rev. E 66(041904), 1–9 (2002)Google Scholar
  32. 32.
    P. Sadasivan, D.N. Dutt, ANC schemes for the enhancement of EEG signals in the presence of EOG artifacts. Comput. Biomed. Res. 29(1), 27–40 (1996)CrossRefGoogle Scholar
  33. 33.
    A.H. Sayed, T. Kailath, A state-space approach to adaptive RLS filtering. IEEE Signal Process. Mag. 11(3), 18–60 (1994)MathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Semmaoui, J. Drolet, A. Lakhssassi, M. Sawan, Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory. IEEE Trans. Biomed. Eng. 59(2), 474–482 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Shao, S. Li, J. Fan, EEG spike detection based on qualitative modelling of visual observation, in Proceedings of IEEE 4th International Conference Fuzzy Systems and Knowledge. Discovery (2007), vol. 2, pp. 745–748Google Scholar
  36. 36.
    F.H.L.D. Silva, A. Dijk, H. Smits, Detection of nonstationarities in EEG’s using autoregressive model—an application to EEG’s of epileptics, in CEAN-Computerized EEG Analysis, ed. by G. Dolce, H. Kunkel (Gustav Fisher, Stuttgart, 1975), pp. 180–199Google Scholar
  37. 37.
    L. Tarassenko, Y.U. Khan, M.R.G. Holt, Identification of inter-ictal spikes in the EEG using neural network analysis. Proceedings of IEEE Science Measurement and Technology 145(6), 270–278 (1998)CrossRefGoogle Scholar
  38. 38.
    M.P. Tarvainen, S. Georgiadis, P.A. Karjalainen, Time-varying analysis of heart rate variability with Kalman smoother algorithm. Physiol. Meas. 27(3), 225–239 (2006)CrossRefGoogle Scholar
  39. 39.
    A.T. Tzallas, V.P. Oikonomous, D.I. Fotiadis, Epileptic spike detection using a Kalman filter based approach, in Proceedings of IEEE International Conference on EMBS (2006), pp. 501–503Google Scholar
  40. 40.
    A.T. Tzallas, M.G. Tsipouras, D.G. Tsalikakis, E.C. Karvounis, L. Astrakas, S. Konitsiotis, M. Tzaphlidou, Automated Epileptic Seizure Detection Methods: A Review Study (INTECH Open Access Publisher, 2012)Google Scholar
  41. 41.
    A.M. White, P.A. Williams, D.J. Ferraro, S. Clark, S.D. Kadam, F.E. Dudek, K.J. Staley, Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J. Neurosci. Methods 152(1–2), 255–266 (2006)CrossRefGoogle Scholar
  42. 42.
    G. Yen, A.N. Michel, A learning and forgetting algorithm in associative memories: results involving pseudo-inverses. IEEE Trans. Circuit Syst. 38(10), 1193–1205 (1991)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations