Circuits, Systems, and Signal Processing

, Volume 35, Issue 9, pp 3066–3085 | Cite as

Ultra-Fast Current Mode Sense Amplifier for Small \(I_{\mathrm{CELL}}\) SRAM in FinFET with Improved Offset Tolerance

  • Bhupendra Singh Reniwal
  • Vikas Vijayvargiya
  • Santosh Kumar VishvakarmaEmail author
  • Devesh Dwivedi


In this paper, a novel, high-performance and robust sense amplifier (SA) design is presented for small \(I_\mathrm{CELLl}\) SRAM, using fin-shaped field effect transistors (FinFET) in 22-nm technology. The technique offers data-line-isolated current sensing approach. Compared with the conventional CSA (CCSA) and hybrid SA (HSA), the proposed current feed-SA (CF-SA) demonstrates 2.15\(\times \) and 3.02\(\times \) higher differential current, respectively, for \({V}_{\mathrm{DD}}\) of 0.6 V. Our results indicate that even at the worst corner, CF-SA can provide 2.23\(\times \) and 1.7\(\times \) higher data-line differential voltage compared with CCSA and HSA, respectively. Further, 66.89 and 31.47 % reductions in the cell access time are achieved compared to the CCSA and HSA, respectively, under similar \(I_\mathrm{CELLl}\) and bit-line and data-line capacitance. Statistical simulations have proved that the CF-SA provides high read yield with 32.39 and 22.24 % less \(\upsigma _{\mathrm{Delay}}\). It also offers a much better read effectiveness and robustness against the data-line capacitance as well as \({V}_{\mathrm{DD}}\) variation. Furthermore, the CF-SA is able to tolerate a large offset of the input devices, up to 80 mV at \({V}_{\mathrm{DD}}=0.6\hbox {V}\).


Process variation Read yield Delay Static random access memory (SRAM) Cell current 


  1. 1.
    M. Alioto, Analysis of layout density in FinFET standard cells and impact of fin technology. in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS), (2010) pp. 3201–3207Google Scholar
  2. 2.
    F. Bedeschi, R. Fackenthal, C. Resta, E.M. Donze, M. Jagasivamani, E.C. Buda, F. pellizzer, D.W. Chow, A. Cabrini, G.M.A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, G. Casagrande, A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J. Solid-State Circuits 44(1), 217–227 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Bhargava, M. McCartney, A. Hoefler, K. Mai, Low-overhead digital offset compensated, SRAM sense amplifiers. in Proceeding of IEEE, Custom Integrated Circuit Conference (CICC), (2009) pp. 705–708Google Scholar
  4. 4.
    M.F. Chang, Y.C. Chen, C.F. Chen, A. Resilient, Power-efficient automatic-power-down sense amplifier for SRAM design. IEEE Trans. Circuits Syst. II Exp. Briefs 55(10), 1031–1035 (2008)CrossRefGoogle Scholar
  5. 5.
    M.-F. Chang, S.J. Shen, A process variation tolerant embedded split-gate flash memory using pre-stable current sensing scheme. IEEE J. Solid-State Circuits 44(3), 987–994 (2009)CrossRefGoogle Scholar
  6. 6.
    M.F. Chang, C.W. Wu, C.C. Kuo, S.J. Shen, K.F. Lin, S.M. Yang, Y.C. King, C.J. Lin, Y.D. Chih, A 0.5 V 4 Mb logic-process compatible embedded resistive RAM (ReRAM) in 65 nm CMOS using low voltage current mode sensing scheme with 45 ns random read time. in Proceeding of IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, (2012) pp. 434–435Google Scholar
  7. 7.
    M.F. Chang, S.M. Yang, C.-W. Liang, C.-C. Chiang, P.-F. Chiu, K.-F. Lin, Noise-immune embedded NAND-ROM using a dynamic split source-line scheme for VDD min and speed improvements. IEEE J. Solid-State Circuits 45(10), 2142–2155 (2010)CrossRefGoogle Scholar
  8. 8.
    S.H. Chang, S.K. Lee, S.J. Park, M.J. Jung, J.C. Han, I.S. Wang, K.H. Lim, J.H. Lee, J.H. Kim, W.K. Kang, T.K. Kang, H.S. Byun, Y.J. Noh, L.H. Kwon, B.K. Koo, M.Cho, J.S. Yang, Y.H. Koh, A 48 nm 32Gb 8-level NAND flash memory with 5.5 MBs program throughput. in Proceeding of IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, (2009) pp. 240–241Google Scholar
  9. 9.
    Y.H. Chen, S.Y. Chou, Q. Li, W.M. Chan, D. Sun, H.J. Liao, P. Wang, M.F. Chang, H. Yamauchi, Compact measurement schemes for bit-line swing. Sense amplifier offset voltage, and word-line pulse width to characterize sensing tolerance margin in a 40 nm fully functional embedded SRAM. IEEE J. Solid-State Circuits 47(4), 2338–2348 (2012)Google Scholar
  10. 10.
    C.J. Chevallier, C.H. Siau, S.F. Lim, S.R. Namala, M. Matsuoka, B.L. Bateman, D. Rinerson, A 0.13 \(\mu \)m 64 Mb multi-layered conductive metal-oxide memory. in Proceeding of IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, (2010) pp. 260–261Google Scholar
  11. 11.
    A. Conte, G.L. Giudice, G. Palumbo, A. Signorello, A high-performance very low-voltage current sense amplifier for nonvolatile memories. IEEE J. Solid-State Circuits 40(2), 507–514 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Cosemans, W. Dehaene, F. Catthoor, A 3.6 pJ/access 480 MHz, 128 kb on-chip SRAM With 850 MHz boost mode in 90 nm CMOS with tunable sense amplifiers. IEEE J. Solid-State Circuits 44(7), 2065–2077 (2009)CrossRefGoogle Scholar
  13. 13.
    M.L. Fan, V.P.H. Hu, Y.N. Chen, P. Su, C.T. Chuang, Variability analysis of sense amplifier for FinFET subthreshold SRAM applications. IEEE Trans. Circuits Syst. II Exp. Briefs 59(12), 1031–1035 (2012)Google Scholar
  14. 14.
    I. Hayashi, T. Amano, N. Watanabe, Y. Yano, Y. Kurado, M. Shirata, K. Dosaka, K. Nii, H. Noda, H. Kawai, A 250-MHz 18-Mb full ternary CAM with low-voltage match line sensing scheme in 65-nm CMOS. IEEE J. Solid-State Circuits 48(11), 2671–2680 (2014)CrossRefGoogle Scholar
  15. 15.
    C.Y. Hsieh, M.L. Fan, V. Pi-Ho Hu, P. Su, C.-T. Chuang, Independently-controlled-gate FinFET Schmitt trigger sub-threshold SRAMs. IEEE Trans. Very Large Scale Integr. Syst. 20(7), 1201–1210 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Ishibashi, K. Takasugi, K. Komiyaji, H. Toyoshima, T. Yamanaka, A. Fukami, N. Hashimoto, N. Ohki, A. Shimizu, T. Hashimoto, T. Nagano, T. Nishida, A 6-ns 4-Mb CMOS SRAM with offset voltage-insensitive current sense amplifiers. IEEE J. Solid-State Circuits 30(4), 480–486 (1995)CrossRefGoogle Scholar
  17. 17.
    R.W. Mann, T.B. Hook, P.T. Nguyen, B.H. Calhoun, Nonrandom device mismatch consideration in nanoscale SRAM. IEEE Trans. Very Large Scale Integr. Syst. 20(7), 1201–1210 (2012)CrossRefGoogle Scholar
  18. 18.
    G.G. Marotta, A. Macerola, A.D. Alessandro, A. Torsi, C. Cerafogli, C. Lattaro, C. Musilli, D. Rivers, E. Sirizotti, F. Paolini, G. Imondi, G. Naso, G. Santin, L. Botticchio, L.D. Santis, L. Pilolli, M.L. Gallese, M. Incarnati, M. Tiburzi, P. Conenna, S. Perugini, V. Moschiano, W.D. Francesco, M. Goldman, C. Haid, D.D. Cicco, D. Orlandi, F. Rori, M. Rossini, T. Vali, R. Ghodsi, F. Roohparvar, A3 bit/cell 32Gb NAND flash memory at 34 nm with 6MB/s program throughput and with dynamic 2 b/cell blocks configuration mode for a program throughput increase up to 13 MB/s. in Proceeding of IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, (2010) pp. 444–445Google Scholar
  19. 19.
    S. Mukhopadhyay, H. Mahmoodi, K. Roy, A novel high-performance and robust sense amplifier using independent gate control in sub-50-nm double-gate MOSFET. IEEE Trans. Very Large Scale Integr. Syst. 14(2), 183–192 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)CrossRefGoogle Scholar
  21. 21.
    PTM-MG multi-gate model for multi-gate FinFET transistors (2013).
  22. 22.
    S.S. Rathod, A.K. Saxena, S. Dasgupta, A low-noise, process-variation-tolerant double-gate FinFET based sense amplifier. Microelectron. Reliab. 51, 773–780 (2011)CrossRefGoogle Scholar
  23. 23.
    J. Ryckaert, P. Raghavan, R. Baert, M.G. Bardon, M. Dusa, A. Mallik, S. Sakhare, B. Vandewalle, P. Wambacq, B. Chava, K. Croes, M. Dehan, D. Jang, P. Leray, T.-T. Liu, K. Miyaguchi, B. Parvais, P. Schuddinck, P. Weemaes, A. Mercha, J. Bömmels, N. Horiguchi, G. McIntyre, A. Thean, Z. Tökei, S. Cheng, D. Verkest, A. Steegen, Design technology co-optimization for N10. in Proceeding of IEEE, Custom Integrated Circuit Conference (CICC), (2014) pp. 1–8Google Scholar
  24. 24.
    E. Seevinck, P.J.V. Beers, H. Ontrop, Current-mode techniques for high-speed VLSI circuits with application to current SA for CMOS SRAM’s. IEEE J. Solid-State Circuits 26(5), 525–536 (1991)CrossRefGoogle Scholar
  25. 25.
    K. Seno, K. Knorpp, L.-L. Shu, N. Teshima, H. Kihara, H. Sato, F. Miyaji, M. Takeda, M. Sasaki, P.T. Chuang, K. Kobayashi, A 9-ns 16-Mb CMOS SRAM with offset-compensated current sense amplifier. IEEE J. Solid-State Circuits 28(11), 1119–1124 (1993)CrossRefGoogle Scholar
  26. 26.
    M. Seok, S. Hanson, J.-S. Seo, D. Sylvester, D. Blauuw, Robust ultra-low voltage ROM design. in Proceeding of the IEEE Custom Integrated Circuits Conference (CICC), (2008) pp. 423–426Google Scholar
  27. 27.
    H. Shang, L. Chang, X. Wang, M. Rooks, Y. Zhang, B. To, K. Babich, G. Totir, Y. Sun, E. Kiewra, M. Ieong, W. Haensch, Investigation of FinFET devices for 32 nm technologies and beyond. in Proceeding of Symposium on VLSI technology (VLSIT), (2006) pp. 54–55Google Scholar
  28. 28.
    M. Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, A compact hybrid current/voltage sense amplifier with offset cancellation for high-speed SRAMs. IEEE Trans. Very Large Scale Integr. Syst. 19(5), 883–894 (2011)CrossRefGoogle Scholar
  29. 29.
    M.E. Sinangil, A.P. Chandrakasan, Application-specific SRAM design using output prediction to reduce bit-line switching activity and statistically gated sense amplifiers for up to 1.9x lower energy/access. IEEE J. Solid-State Circuits 49(1), 107–117 (2014)CrossRefGoogle Scholar
  30. 30.
    SOI Group of University of Florida, UFDG MOSFET Model User Guide (Linux Version) (2003).
  31. 31.
    M.F. Tsai, J.H. Tsai, M.L. Fan, P. Su, C.-T. Chuang, variation tolerant CLSAs for nanoscale bulk-CMOS and FinFET SRAM. in Proceeding of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), (2012) pp. 471–474Google Scholar
  32. 32.
    D.A. Tuan, K.Z. Hui, Y.K. Seng, Hybrid-mode SRAM sense amplifiers: new approach on transistor sizing. IEEE Trans. Circuits Syst. II Exp. Briefs 55(10), 986–990 (2008)CrossRefGoogle Scholar
  33. 33.
    B. Wicht, S. Paul, D.S. Landsiedel, Analysis and compensation of the bitline multiplexer in SRAM current sense amplifiers. IEEE J. Solid-State Circuits 36(11), 1745–1755 (2001)CrossRefGoogle Scholar
  34. 34.
    B. Zhai, D. Blaauw, D. Sylvester, S. Hanson, A variation-tolerant sub-200 mV 6T subthreshold SRAM. IEEE J. Solid-State Circuits 43(10), 2338–2348 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bhupendra Singh Reniwal
    • 1
  • Vikas Vijayvargiya
    • 1
  • Santosh Kumar Vishvakarma
    • 1
    Email author
  • Devesh Dwivedi
    • 2
  1. 1.Nanoscale Devices, VLSI Circuit and System Design Lab, Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.SRAM Development, System and Technology GroupIBMBangaloreIndia

Personalised recommendations