Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1677–1703 | Cite as

Design and Implementation of Computationally Efficient Image Compressor for Wireless Capsule Endoscopy

  • Kinde A. FanteEmail author
  • Basabi Bhaumik
  • Shouri Chatterjee
Article

Abstract

An image compressor inside wireless capsule endoscope should have low power consumption, small silicon area, high compression rate and high reconstructed image quality. Simple and efficient image compression scheme, consisting of reversible color space transformation, quantization, subsampling, differential pulse code modulation (DPCM) and Golomb–Rice encoding, is presented in this paper. To optimize these methods and combine them optimally, the unique properties of human gastrointestinal tract image are exploited. Computationally simple and suitable color spaces for efficient compression of gastrointestinal tract images are proposed. Quantization and subsampling methods are optimally combined. A hardware-efficient, locally adaptive, Golomb–Rice entropy encoder is employed. The proposed image compression scheme gives an average compression rate of 90.35 % and peak signal-to-noise ratio of 40.66 dB. ASIC has been fabricated on UMC130nm CMOS process using Faraday high-speed standard cell library. The core of the chip occupies 0.018 mm\(^2\) and consumes 35 \(\upmu {\text {W}}\) power. The experiment was performed at 2 frames per second on a \(256\times 256\) color image. The power consumption is further reduced from 35 to 9.66 \(\upmu \)W by implementing the proposed image compression scheme using Faraday low-leakage standard cell library on UMC130nm process. As compared to the existing DPCM-based implementations, our realization achieves a significantly higher compression rate for similar area and power consumption. We achieve almost as high compression rate as can be achieved with existing DCT-based image compression methods, but with an order of reduced area and power consumption.

Keywords

Wireless capsule endoscopy Differential pulse code modulation Image compressor Subsampling Low-complexity Locally adaptive Golomb–Rice code 

Notes

Acknowledgments

The authors would like to acknowledge Ravi Informatics for soldering the packaged IC on PCB. The authors also would like to thank Texas Instruments Pvt Ltd for providing SN74AVC8T245, a voltage level shifter IC which we have used to interface our chip with a logic analyzer.

References

  1. 1.
    T. Acharya, A.K. Ray, Image Processing: Principles and Applications (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  2. 2.
    O. Alonso, L. Freixas, A. Dieguez, Advancing towards smart endoscopy with specific electronics to enable locomotion and focusing capabilities in a wireless endoscopic capsule robot, in IEEE Biomedical Circuits and Systems Conference (BioCAS, 2009). (Beijing. China, 2009), p. 213–216. doi: 10.1109/BIOCAS.2009.5372047
  3. 3.
    Aptina, MT9V011 Image Sensor. http://www.aptina.com. Accessed May 2014
  4. 4.
    N. Bourbakis, G. Giakos, A. Karargyris, Design of new-generation robotic capsules for therapeutic and diagnostic endoscopy, in 2010 IEEE International Conference on Imaging Systems and Techniques (IST), Thessaloniki, Greece (2010), pp. 1–6. doi: 10.1109/IST.2010.5548467
  5. 5.
    C. Chang, L. Zhiyong, H.Chao, M.Q.-H.Meng, A novel wireless capsule endoscope with JPEG compression engine, in IEEE International Conference on Automation and Logistics (ICAL), Hong Kong and Macau, China (2010), pp. 553–558. doi: 10.1109/ICAL.2010.5585345
  6. 6.
    X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang, Z. Wang, A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Trans. Biomed. Circuits Syst. 3(1), 11–22 (2009). doi: 10.1109/TBCAS.2008.2006493 CrossRefGoogle Scholar
  7. 7.
    H. Chao, M.Q.-H. Meng, L. Li, P. Yinzi, L. Zhiyong, Image representation and compression for capsule endoscope robot, in Proceedings of International Conference on Information and Automation (ICIA’09), Zhuhai, Macau, China (2009), pp. 506–511. doi: 10.1109/ICINFA.2009.5204976
  8. 8.
    P.C. Cosman, R.M. Gray, R.A. Olshen, Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc. IEEE. 82(6), 919–932 (1994). doi: 10.1109/5.286196 CrossRefGoogle Scholar
  9. 9.
    T.M. Deserno, Biomedical Image Processing (Springer, Heidelberg, 2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    L. Dung, Y. Wu, H. Lai, P. Weng, A modified H.264 intra-frame video encoder for capsule endoscope, in Biomedical Circuits and Systems Conference (BioCAS), Baltimore, MD, USA (2008), pp. 61–64. doi: 10.1109/BIOCAS.2008.4696874
  11. 11.
    Gatrolab. http://gastrolab.net/. Accessed May 2014
  12. 12.
    S. Hosseini, M.B. Khamesee, Design and control of a magnetically driven capsule-robot for endoscopy and drug delivery, in 2009 IEEE Toronto International Conference on Science and Technology for Humanity (TIC-STH), Toronto, Canada (2009), pp. 697–702. doi: 10.1109/TIC-STH.2009.5444409
  13. 13.
    G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy. Nature 405(6785), 415–417 (2000). doi: 10.1038/35013140 CrossRefGoogle Scholar
  14. 14.
    R. Istepanian, N. Philip, M.G. Martini, N. Amso, P. Shorvon, Subjective and objective quality assessment in wireless teleultrasonography imaging, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Vancouver, Canada (2008), pp. 5346–5349. doi: 10.1109/IEMBS.2008.4650422
  15. 15.
    W. Jing, L. Ye, Low-complexity video compression for capsule endoscope based on compressed sensing theory, in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, USA (2009), pp. 3727–3730. doi: 10.1109/IEMBS.2009.5334819
  16. 16.
    JPEG, Lossless and near-lossless compression of continuous-tone still images-baseline (JPEG-LS), T.87 (1998)Google Scholar
  17. 17.
    T.H. Khan, K. Wahid, Lossless and low-power image compressor for wireless capsule endoscopy. VLSI Design. 2011, art. ID 343787, (2011). doi: 10.1155/2011/343787
  18. 18.
    T.H. Khan, K. Wahid, Low-power and low complexity compressor for video capsule endoscopy. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1534–1546 (2011). doi: 10.1109/TCSVT.2011.2163985 CrossRefGoogle Scholar
  19. 19.
    T.H. Khan, K. Wahid, Subsample-based image compression for capsule endoscopy. J. Real-Time Image Proc. 8(1), 5–19 (2011). doi: 10.1007/s11554-011-0208-7 CrossRefGoogle Scholar
  20. 20.
    T.H. Khan, K. Wahid, Implantable narrow band image compressor for capsule endoscopy, in IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, South Korea (2012), pp. 2203–2206. doi: 10.1109/ISCAS.2012.6271727
  21. 21.
    T.H. Khan, K. Wahid, Low-complexity colour-space for capsule endoscopy image compression. Electron. Lett. 47(22), 1217–1218 (2011). doi: 10.1049/el.2011.2211 CrossRefGoogle Scholar
  22. 22.
    J. Korhonen, Y. Junyong, Peak signal-to-noise ratio revisited: Is simple beautiful?, in Fourth International Workshop on Quality of Multimedia Experience (QoMEX), Yarra Valley, VIC, Australia (2012), pp. 37–38. doi: 10.1109/QoMEX.2012.6263880
  23. 23.
    M. Lin, L. Dung, A subsample-based low-power image compressor for capsule gastrointestinal endoscopy. EURASIP J. Adv. Signal Process. 2011, 415–417 (2011). doi: 10.1155/2011/257095 CrossRefGoogle Scholar
  24. 24.
    M. Lin, L. Dung, P. Weng, An ultra-low-power image compressor for capsule endoscope. BioMed Eng. 5(14), 415–417 (2000). doi: 10.1186/1475-925X-5-14
  25. 25.
    J.W. Marks, Wireless capsule endoscopy [Online]. http://www.medicinenet.com/capsule_endoscopy/article.htm. Accessed 12 April 2014
  26. 26.
    C. McCaffrey, O. Chevalerias, C. O’Mathuna, K. Twomey, Swallowable-capsule technology. Pervasive Comput 7(1), 23–29 (2008). doi: 10.1109/MPRV.2008.17 CrossRefGoogle Scholar
  27. 27.
    Microsemi, ZL70102 Wireless for Implantable Medical Devices. http://www.microsemi.com/. Accessed May 2014
  28. 28.
    A. Moglia, A. Menciassi, P. Dario, Recent patents on wireless capsule endoscopy. Recent Patents Biomed. Eng. 7(1), 24–33 (2008). doi: 10.2174/1874764710801010024 CrossRefGoogle Scholar
  29. 29.
    A. Mostafa, K. Wahid, S. Ko, An efficient YUV-based image compression algorithm for wireless capsule endoscopy, in Proceedings of 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada (2011), pp. 943–946. doi: 10.1109/CCECE.2011.6030598
  30. 30.
    OmniVisoin, OVM7690 CameraCube.http://www.ovt.com. Accessed May 2014
  31. 31.
    S.K. Pattanaik, K.K. Mahapatra, G. Panda, A novel lossless image compression algorithm using arithmetic modulo operation, in IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, (2006), pp. 1–5. doi: 10.1109/ICCIS.2006.252303
  32. 32.
    M. Quirini, A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, P. Dario, Development of a legged capsule for the gastrointestinal tract: an experimental set-up, in 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shatin, China (2005), pp. 161–167. doi: 10.1109/ROBIO.2005.246256
  33. 33.
    K. Takizawa, K. Hamaguchi, Low-complexity video encoding method for wireless image transmission in capsule endoscope, in Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina (2010), pp. 3479–3482. doi: 10.1109/IEMBS.2010.5627839
  34. 34.
    M. Tkalcic, J.F. Tasic, Colour spaces: perceptual, historical and applicational background, in EUROCON 2003. Computer as a Tool. The IEEE Region 8, (2003), pp. 304–308 (2003). doi: 10.1109/EURCON.2003.1248032
  35. 35.
    TCM8230MD Image Sensor. http://www.sparkfun.com. Accessed May 2014
  36. 36.
    D. Travis, Effective Color Displays: Theory and Practice (Academic Press, London, 1991)Google Scholar
  37. 37.
    P. Turcza, M. Duplaga, Low-power image compression for wireless capsule endoscopy, in IEEE International Workshop on Imaging Systems and Techniques (IST’07), Krakow, Poland (2007), pp. 1–4. doi: 10.1109/IST.2007.379586
  38. 38.
    P. Turcza, M. Duplaga, Low power FPGA-based image processing core for wireless capsule endoscopy. Sens. Actuators A Phys. 172(2), 552–560 (2011). doi: 10.1016/j.sna.2011.09.026 CrossRefGoogle Scholar
  39. 39.
    P. Turcza, M. Duplaga, Hardware-efficient low-power image processing system for wireless capsule endoscopy. IEEE J. Biomed Health Inform. 17(6), 1046–1056 (2013). doi: 10.1109/JBHI.2013.2266101 CrossRefGoogle Scholar
  40. 40.
    D.P. Varodayan, Adaptive Distributed Source Coding, Ph.D. thesis. Stanford University, USA 2010Google Scholar
  41. 41.
    K. Wahid, S. Ko, D.Teng, Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications, in IEEE International Joint Conference on Neural Networks (IJCNN), Hong Kong, China (2008), pp. 2761–2765. doi: 10.1109/IJCNN.2008.4634186
  42. 42.
    Z. Wang, A.C. Bovik, E.P. Simoncelli, Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). doi: 10.1109/MSP.2008.930649 CrossRefGoogle Scholar
  43. 43.
    Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi: 10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  44. 44.
    A.Y. Wang, C.G. Sodini, On the energy efficiency of wireless transceivers, in Proceedings of 2006 IEEE International Conference on Communications (ICC’06), Istanbul, Greece (2006), pp. 3783–3788. doi: 10.1109/ICC.2006.255661
  45. 45.
    M.J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: a low complexity, context-based, lossless image compression algorithm, in Proceedings of Data Compression Conference (DCC’96), Snowbird, UT, USA (1996), pp. 140–149. doi: 10.1109/DCC.1996.488319
  46. 46.
    X. Xie, G. Li, X. Chen, X. Li, Z. Wang, A low-power digital ic design inside the wireless endoscopic capsule. IEEE J. Solid-State Circuits 41(11), 2390–2400 (2006). doi: 10.1109/JSSC.2006.882884 CrossRefGoogle Scholar
  47. 47.
    L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). doi: 10.1109/TIP.2011.2109730 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kinde A. Fante
    • 1
    Email author
  • Basabi Bhaumik
    • 1
  • Shouri Chatterjee
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations