Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 2, pp 385–407 | Cite as

Single-Ended Boost-Less (SE-BL) 7T Process Tolerant SRAM Design in Sub-threshold Regime for Ultra-Low-Power Applications

  • C. B. Kushwah
  • S. K. VishvakarmaEmail author
  • D. Dwivedi
Article

Abstract

A novel single-ended boost-less 7T static random access memory cell with high write-ability and reduced read failure is proposed. Proposed 7T cell utilizes dynamic feedback cutting during write/read operation. The 7T also uses dynamic read decoupling during read operation to reduce the read disturb. Proposed 7T writes “1” through one NMOS and writes “0” using two NMOS pass transistors. The 7T has mean \((\mu )\) of 222.3 mV (74.1 % of supply voltage) for write trip point where 5T fails to write “1” at 300 mV. It gives mean \((\mu )\) of 276 mV (92 % of supply voltage) for read margin, while 5T fails due to read disturb at 300 mV. The hold static noise margin of 7T is maintained close to that of 5T. The read operation of 7T is 22.5 % faster than 5T and saves 10.8 % read power consumption. It saves 36.9 % read and 50 % write power consumption as compared to conventional 6T. The novel design of proposed 7T consumes least read power and achieves the lowest standard deviation as compared to other reported SRAM cells. The power consumption of 1 kb 7T SRAM array during read and write operations is 0.70\(\times \) and 0.65\(\times \), respectively, of 1 kb 6T array. The techniques used by the proposed 7T SRAM cell allow it to operate at ultra-low-voltage supply without any write assist in UMC 90 nm technology node. Future applications of the proposed 7T cell can potentially be in low-voltage, ultra-low-voltage and medium-frequency operations like neural signal processor, sub-threshold processor, wide-operating-range IA-32 processor, FFT core and low-voltage cache operation.

Keywords

Boost-less Single-ended Static random access memory (SRAM) Ultra-low power 

References

  1. 1.
    A. Bhavnagarwala, X. Tang, J. Meindl, The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Solid-State Circuits 36(4), 658–665 (2001)CrossRefGoogle Scholar
  2. 2.
    B.H. Calhoun, A.P. Chandrakasan, A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 42(3), 680–688 (2007)CrossRefGoogle Scholar
  3. 3.
    I. Carlson, S. Andersson, S. Natarajan, A. Alvandpour, A high density, low leakage, 5T SRAM for embedded caches, in Proceedings of 30th European Solid State Circuits Conference, pp. 215–218, 2004Google Scholar
  4. 4.
    I.J. Chang, J.-J. Kim, S.P. Park, K. Roy, A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44(2), 650–658 (2009)CrossRefGoogle Scholar
  5. 5.
    M.-F. Chang, S.-W. Chang, P.-W. Chou, W.-C. Wu, A 130 mV SRAM with expanded write and read margins for sub-threshold applications. IEEE J. Solid-State Circuits 46(2), 520–529 (2011)CrossRefGoogle Scholar
  6. 6.
    B. Cheng, S. Roy, A. Asenov, The impact of random doping effects on CMOS SRAM cell, in Proceedings 30th European Solid-State Circuits Conference (ESSCIRC), Belgium, pp. 219–222, 2004Google Scholar
  7. 7.
    S. Cosemans, W. Dehaene, F. Catthoor, A low-power embedded SRAM for wireless applications. IEEE J. Solid-State Circuits 42(7), 1607–1617 (2007)CrossRefGoogle Scholar
  8. 8.
    R. Gonzalez, B. Gordon, M. Horowitz, Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 32(8), 1210–1216 (1997)CrossRefGoogle Scholar
  9. 9.
    W. Jiajing, S. Nalam, B.H. Calhoun, Analyzing static and dynamic write margin for nanometer SRAMs. in Proceedings of ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 129–134, 2014Google Scholar
  10. 10.
    M. Khellah, D. Somasekhar, Y. Ye, N. Kim, J. Howard, G. Ruhl, M. Sunna, J. Tschanz, N. Borkar, F. Hamzaoglu, G. Pandya, A. Farhang, K. Zhang, V. De, A 256-kb dual-VCC SRAM building block in 65-nm CMOS process with actively clamped sleep transistor. IEEE J. Solid-State Circuits 42(1), 233–242 (2007)CrossRefGoogle Scholar
  11. 11.
    T.-H. Kim, J. Liu, C.H. Kim, An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement, in Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp. 241–244, 2007Google Scholar
  12. 12.
    T.H. Kim, J. Liu, C.H. Kim, A voltage scalable 0.26 V, 64 kb 8T SRAM with voltage lowering techniques and deep sleep mode. IEEE J. Solid-State Circuits 44(6), 1785–1795 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.P. Kulkarni, K. Kim, K. Roy, A 160 mV robust schmitt trigger based subthreshold SRAM. IEEE J. Solid-State Circuits 42(10), 2303–2313 (2007)CrossRefGoogle Scholar
  14. 14.
    C.B. Kushwah, D. Dwivedi, N. Sathisha, 8T Based SRAM Cell and Related Method. U. S. A., IBM docket no. IN920130218US1, Filed April 2013. Patent Pending (2014)Google Scholar
  15. 15.
    C.B. Kushwah, S.K. Vishvakarma, D. Dwivedi, Single-ended sub-threshold FinFET 7T SRAM cell without boosted supply, in Proceedings of IEEE International Conference on IC Design & Technology (ICICDT), pp. 1–4, 2014Google Scholar
  16. 16.
    C.B. Kushwah S.K. Vishvakarma, A sub-threshold eight transistor (8T) SRAM cell design for stability improvement. in Proceedings of IEEE International Conference on IC Design & Technology (ICICDT), pp. 1–4, 2014Google Scholar
  17. 17.
    C.B. Kushwah, S.K. Vishvakarma, Ultra-low power sub-threshold SRAM cell design to improve read static noise margin. Lect. Notes Comput. Sci. 7373, 139–146 (2012)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, V. Kursun, Characterization of a novel nine-transistor SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16, 488–492 (2008)CrossRefGoogle Scholar
  19. 19.
    C.-H. Lo, S.-Y. Huang, P–P–N based 10T SRAM cell for low-leakage and resilient subthreshold operation. IEEE J. Solid-State Circuits 46(3), 695–704 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Markovic, C.C. Wang, L.P. Alarcon, T.-T. Liu, J.M. Rabaey, Ultralow-power design in near-threshold region. Proc. IEEE 98(2), 237–252 (2010)CrossRefGoogle Scholar
  21. 21.
    T. Ming-Hsien, J.-Y. Lin, M.-C. Tsai, L. Chien-Yu, Y.-J. Lin, M.-H. Wang, H.-S. Huang, K.-D. Lee, W.-C. Shih, S.-J. Jou, C.-T. Chuang, A single-ended disturb-free 9T subthreshold SRAM with cross-point data-aware write word-line structure, negative bit-line, and adaptive read operation timing tracing. IEEE J. Solid-State Circuits 47(6), 1469–1482 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Mukhopadhyay, H. Mahmoodi, K. Roy, Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Computer-Aided Design (CAD) Integr. Circuits Syst. 24(12), 1859–1880 (2005)CrossRefGoogle Scholar
  23. 23.
    G. Pasandi, S.M. Fakhraie, A new sub-threshold 7T SRAM cell design with capability of bit-interleaving in 90 nm CMOS, in Proceedings of 2013 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–6, 2013Google Scholar
  24. 24.
    K. Roy, S. Prasad, Low Power CMOS VLSI Circuit Design, 1st edn. (Wiley, New York, 2000)Google Scholar
  25. 25.
    E. Seevinck et al., Static noise margin analysis of MOS SRAM cells. IEEE J. Solid-State Circuits SC–22(10), 748–754 (1987)CrossRefGoogle Scholar
  26. 26.
    K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, H. Kobatake, A read-staic-noise-margin-free SRAM cell for low-VDD and high-speed applications. IEEE J. Solid-State Circuits 41(1), 113–121 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Tawfik, V. Kursun, Low power and robust 7T dual-Vt SRAM circuit, in Proceedings of International Symposium Circuits and Systems, pp. 1452–1455, 2008Google Scholar
  28. 28.
    M.-H. Tu, J.-Y. Lin, M.-C. Tsai, S.J. Jou, C.-T. Chuang, Single-ended subthreshold SRAM with asymmetrical write/read-assist. IEEE Trans. Circuit Syst I 57(12), 3039–3047 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Verma, A.P. Chandrakasan, A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuits 43(1), 141–149 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Wang, A. Chandrakasan, A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J. Solid-State Circuits 40(1), 310–319 (2005)CrossRefGoogle Scholar
  31. 31.
    Y.L. Yeoh, B. Wang, X. Yu, T.T. Kim, A 0.4V 7T SRAM with write through virtual ground and ultra-fine grain power gating switches. in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3030–3033, 2013Google Scholar
  32. 32.
    N. Yoshinobu, H. Masahi, K. Takayuki, K. Itoh, Review and future prospects of low-voltage RAM circuits. IBM J. Res. Dev. 47(5/6), 525–552 (2003)Google Scholar
  33. 33.
    B. Zhai, S. Hanson, D. Blaauw, D. Sylvester, A variation-tolerant sub-200 mV 6-T subthreshold SRAM. IEEE J Solid-State Circuits 43(10), 2338–2348 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • C. B. Kushwah
    • 1
  • S. K. Vishvakarma
    • 1
    Email author
  • D. Dwivedi
    • 2
  1. 1.Nanoscale Devices, VLSI Circuit and System Design Lab, Electrical EngineeringIIT IndoreIndoreIndia
  2. 2.System Technology GroupIBMBangaloreIndia

Personalised recommendations