Circuits, Systems, and Signal Processing

, Volume 35, Issue 1, pp 211–231 | Cite as

Digital Signal Processor-Based Broad Null Beamforming for Interference Reduction

  • D. VenkataramanaEmail author
  • S. K. Sanyal
  • Iti Saha Misra


Shaping the radiation pattern of an antenna array to null the reception (or radiation in the case of transmitting antenna) in the direction of undesired interferences has become essential in the environment of electromagnetic interferences. This paper proposes a digital signal processor-based method using space-selective digital filter with Blackman window to nullify the broad interferences of a linear array along with its implementation. Convolution between array weight vector and filter coefficients of digital filter is performed to obtain the desired beam pattern. The cutoff points of the filter and hence the array weight vector are updated adaptively so as to obtain the desired attenuation in the vicinity \((\pm \Delta \varphi _{\mathrm{i}})\) of mean broad interfering direction \((\varphi _{\mathrm{i}})\). The even symmetry of the modified weight vector about its center is utilized to minimize the computational burden. The proposed model offers advantages such as more than 80-dB attenuation to broad interferences and lesser computational time with respect to conventional processor. Numerical results are presented to justify the performance of the proposed method for nullifying the interferences that are arriving over a nulling range between \([\varphi _{\mathrm{i}}-\Delta \varphi _{\mathrm{i}}]\) and \([\varphi _{\mathrm{i}}+\Delta \varphi _{\mathrm{i}}]\). The vicinity \((\pm \Delta \varphi _{\mathrm{i}})\) considered in the proposed model varies between \(1^{\circ }\) and \(8^{\circ }\). Exhaustive performance analysis is also provided with different directions of arrivals and desired attenuations for effective suppression of interference.


Discrete space fourier transform (DSFT) Linear convolution Digital filter Digital signal processor Array factor Broad nulling 


  1. 1.
    D.I. Abu-Al-Nadi, T.H. Ismail, H. Al-Tous, M.J. Mismar, Design of linear phased array for interference suppression using array polynomial method and particle swarm optimization. Wirel. Pers. Commun. 63(2), 501–513 (2012)CrossRefGoogle Scholar
  2. 2.
    Q.M. Alfred, K. Bishayee, T. Chakravarty, S.K. Sanyal, A DSP based study of pattern nulling and pattern shaping using transform domain window technique. Prog. Electromagn. Res. C 2, 31–45 (2008)CrossRefGoogle Scholar
  3. 3.
    Q.M. Alfred, T. Chakravarty, S.K. Sanyal, Overlapped sub array architecture of a wideband phased array antenna with interference suppression capability. J. Electromag. Anal. Appl. 5, 201–204 (2013)Google Scholar
  4. 4.
    C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1982)Google Scholar
  5. 5.
    W.Chiang WU, Y.J. Wang, A study of beam pattern generation methods for antenna array systems. J. Sci. Eng. Technol. 1(2), 7–12 (2005)Google Scholar
  6. 6.
    C.L. Dolph, A current distribution for broadside arrays which optimizes the relationship between beam width and side lobe level. Proc. IRE 34, 335–447 (1946)CrossRefGoogle Scholar
  7. 7.
    L.C. Godara, Application of antenna arrays to mobile communications, part II: Beam-forming and direction-of-arrival considerations. Proc. IEEE. 85(8), 1195–1245 (1997)CrossRefGoogle Scholar
  8. 8.
    F.B. Gross, Smart Antennas for Wireless Communications with MATLAB (McGraw-Hill, New Delhi, 2005)Google Scholar
  9. 9.
    K. Guney, B. Babayigit, A. Akdagli, Position Only Pattern Nulling of Linear Antenna Array by Using a Clonal Selection Algorithm (CLONALG) (ElectrEng, Springer, New York, 2007), pp. . 147–153Google Scholar
  10. 10.
    K. Guney, M. Onay, Amplitude-only pattern nulling of linear antenna arrays with the use of Bees algorithm. Prog. Electromagn. Res. 70, 21–36 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Guney, M. Onay, Bees algorithm for interference suppression of linear antenna arrays by controlling the positions of selected elements. J. Commun. Technol. Electron. 58(12), 1147–1156 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Hwa, Linear antenna array pattern synthesis with prescribed broad nulls. IEEE Trans. Antennas Propag. 38(9), 1496–1498 (1990)CrossRefGoogle Scholar
  13. 13.
    E.C. Jordan, K.G. Balmain, EM Waves and Radiating Systems (Prentice Hall of India Private Limited, New Delhi, 1987)Google Scholar
  14. 14.
    Y. Jun lee, J. Woo Seo, J.-K. Ha, Null Steering of Linear Phased Array using Genetic Algorithm. IEEE Microwave conference, 7–10 December, 2726–2729, Singapore (2009)Google Scholar
  15. 15.
    P.D. Karaminas, A. Manikas, Super-resolution broad null beamforming for co-channel interference cancellation in mobile radio networks. IEEE Trans. Vehicular Technol. 49(3), 689–697 (2000)CrossRefGoogle Scholar
  16. 16.
    D. Marcano, F. Duran, Synthesis of antenna arrays using genetic algorithms. IEEE Trans. Antennas Propag. Mag. 42(3), 12–20 (2000)CrossRefGoogle Scholar
  17. 17.
    D.F. Marshall, Adaptive Cancellation of Impulsive Interference in Phased Array Radar. IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2010), 12–15 October, Massachusetts, USA (2010)Google Scholar
  18. 18.
    M. Mouhamadou, P. Armand, P. Vaudon, M. Rammal, Interference suppression of linear antenna arrays controlled by phase with use of SQP algorithm. Prog. Electromagn. Res. 59, 251–265 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Mouhamadou, P. Vaudon, Complex weight control of array pattern nulling. Wiley Inter Sci. 17(3), 304–310 (2007)Google Scholar
  20. 20.
    A. Nagoor Kani, Digital Signal Processing (RBA publications, Chennai, India, 2004)Google Scholar
  21. 21.
    J.G. Proakis Dimitris, G. Manolakis, Digital Signal Processing (Pearson Education, New Delhi, India, 2007)Google Scholar
  22. 22.
    M. Skolnik, System Aspects of Digital Beam Forming Ubiquitous Radar. Naval Research Lab, Report No. NRL/MR/500702-8625, June 28 (2002)Google Scholar
  23. 23.
    A. Smida, R. Ghayoula, A. Gharsallah, Phase-only adaptive nulling with taguchis method for antenna array synthesis. Am. J. Appl. Sci. 9(11), 1833–1839 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Srinivasan, A. Singh, Digital Signal Processing Implementations Using DSP Microprocessors with Examples from TMS320C54XX (Thomson/Brooks/Cole, 2004)Google Scholar
  25. 25.
    Texas Instruments, Code Composer Studio Users Guide (SPRU328B) (2000)Google Scholar
  26. 26.
    F. Tokan, F. Gunes, Interference suppression by optimising the positions of selected elements using generalised pattern search algorithm. IET Microw. Antennas Propag. 5(2), 127–135 (2011)CrossRefGoogle Scholar
  27. 27.
    B. Venkataramani, M. Bhaskar, Digital Signal Processors Architecture, Programming and Applications (Tata McGraw Hill, New Delhi, 2002)Google Scholar
  28. 28.
    R. Vescovo, Null synthesis by phase control for antenna arrays. Electron. Lett. 36(3), 198–199 (2000)CrossRefGoogle Scholar
  29. 29.
    S. Yang, B. Gan, A. Qing, Antenna-array pattern nulling using a differential evolution algorithm. Int. J. Microwave RF Comput. Aid. Eng. 14, 57–63 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Venkataramana
    • 1
    Email author
  • S. K. Sanyal
    • 1
  • Iti Saha Misra
    • 1
  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations