Circuits, Systems, and Signal Processing

, Volume 34, Issue 11, pp 3449–3469 | Cite as

Comparison of Two Solutions of Quadrature Oscillators With Linear Control of Frequency of Oscillation Employing Modern Commercially Available Devices

  • Roman SotnerEmail author
  • Jan Jerabek
  • Lukas Langhammer
  • Josef Polak
  • Norbert Herencsar
  • Roman Prokop
  • Jiri Petrzela
  • Winai Jaikla


This paper proposes two circuits of frequency-controlled oscillators, whose structures are based only on simple commercially available active elements with minimum number of terminals, in particular, the differential voltage buffer, controllable voltage amplifier and electronically controllable current conveyor. Two methods for achieving linear control (tuning) of frequency of oscillations (FO) are discussed. The first method employs a simple structure. However, the generated signal level (amplitude) depends on the tuning process. This is a drawback of this method. The second method solves this drawback completely, and the generated signals have constant amplitudes during the tuning of FO. The expected behavior is confirmed by laboratory experiments utilizing commercially available high-speed active elements (current- and voltage-mode multipliers, video difference amplifier). Operational range was tested from frequencies of hundreds of kHz up to frequencies of tens of MHz.


Quadrature oscillator Linear control Current mode multiplier Voltage-mode multiplier Differential voltage buffer Electronic control 



Research described in this paper was financed by Czech Ministry of Education in frame of National Sustainability Program under Grant LO1401. For research, infrastructure of the SIX Center was used. Research described in the paper was supported by Czech Science Foundation project under No. 14-24186P. Grant No. FEKT-S-14-2281 also supported this research. The support of the Project CZ.1.07/2.3.00/20.0007 WICOMT, financed from the operational program Education for competitiveness, is gratefully acknowledged. The authors would like to thank the editor and the anonymous reviewers for their useful and constructive comments that helped to improve the paper.


  1. 1.
    AD830: High speed, video difference amplifier, analog devices [online] (2005), last modified 3/2003 [cit.27.4.2014].
  2. 2.
    AD835: 250 MHz, voltage output 4-quadrant, analog devices [online] (1994), last modified 12/2010 [cit. 22.4.2014].
  3. 3.
    H. Alzaher, CMOS digitally programmable quadrature oscillators. Int. J. Circuit Theory Appl. 36(8), 953–966 (2008). doi: 10.1002/cta.479 CrossRefGoogle Scholar
  4. 4.
    D.R. Bhaskar, K.K. Abdalla, R. Senani, Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst. 2(2), 65–73 (2011). doi: 10.4236/cs.2011.22011 CrossRefGoogle Scholar
  5. 5.
    D. Biolek, A. Lahiri, W. Jaikla, M. Siripruchyanun, J. Bajer, Realisation of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42(10), 1116–1123 (2011). doi: 10.1016/j.mejo.2011.07.004 CrossRefGoogle Scholar
  6. 6.
    D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposal. Radioengineering 17(4), 15–32 (2008)Google Scholar
  7. 7.
    V. Biolkova, J. Bajer, D. Biolek, Four-phase oscillators employing two active elements. Radioengineering 20(1), 334–339 (2011)Google Scholar
  8. 8.
    EL2082: Current-Mode Multiplier, Intersil (Elantec) [online] (1996), last modified 2003 [cit.28.7.2011].
  9. 9.
    J. Galan, R.G. Carvalaj, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with large tuning range. IEEE Trans. Circuits Syst. I 52(2), 283–291 (2005). doi: 10.1109/TCSI.2004.841599 CrossRefGoogle Scholar
  10. 10.
    W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTA and grounded capacitors. AEU Int. J. Electron. Commun. 66(3), 214–218 (2012). doi: 10.1016/j.aeue.2011.07.001 CrossRefGoogle Scholar
  11. 11.
    R. Keawon, W. Jaikla, A resistor-less current-mode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Prz. Elektrotech. 87(8), 138–141 (2011)Google Scholar
  12. 12.
    F. Khateb, F. Kacar, N. Khatib, D. Kubanek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013). doi: 10.1007/s00034-012-9470-6 MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Kuntman, A. Ozpinar, On the realization of DO-OTA-C oscillators. Microelectron. J. 29(12), 991–997 (1998). doi: 10.1016/S0026-2692(98)00063-9 CrossRefGoogle Scholar
  14. 14.
    A. Lahiri, Current-mode variable frequency quadrature sinusoidal oscillator using two CCs and four passive components including grounded capacitors. Analog Integr. Circuits Signal Process. 71(2), 303–311 (2012). doi: 10.1007/s10470-010-9571-8 CrossRefGoogle Scholar
  15. 15.
    A. Lahiri, M. Gupta, Realizations of grounded negative capacitance using CFOAs. Circuits Syst. Signal Process. 30(1), 143–155 (2011). doi: 10.1007/s00034-010-9215-3 zbMATHCrossRefGoogle Scholar
  16. 16.
    Y. Li, Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron. J. 45(3), 330–335 (2014). doi: 10.1016/j.mejo.2013.12.005 CrossRefGoogle Scholar
  17. 17.
    Y. Li, Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering 19(4), 667–671 (2010)Google Scholar
  18. 18.
    B. Linarez-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, L. Huertas, CMOS OTA-C High frequency sinusoidal oscillators. IEEE J. Solid State Circuits 26(2), 160–165 (1991). doi: 10.1109/4.68133 CrossRefGoogle Scholar
  19. 19.
    OPA2652: Dual 700 MHz, Voltage-Feedback Operational Amplifier, Texas Instruments [online]. (2006), last modified 5/2006 [cit.27.4.2014].
  20. 20.
    N. Pandey, S. K. Paul, Single CDTA-based current mode all-pass filter and its applications. J. Electr. Comput. Eng. 1–5 (2011). doi: 10.1155/2011/897631
  21. 21.
    A. Rodriguez-Vazquez, B. Linarez-Barranco, L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTA’s. IEEE Trans. Circuits Syst. I 37(2), 198–211 (1990). doi: 10.1109/31.45712 CrossRefGoogle Scholar
  22. 22.
    Ch. Sakul, W. Jaikla, K. Dejhan, New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors. Radioengineering 20(4), 890–897 (2011)Google Scholar
  23. 23.
    A.M. Soliman, Two integrator loop quadrature oscillators: A review. J. Adv. Res. 4(1), 1–11 (2013). doi: 10.1016/j.jare.2012.03.001 CrossRefGoogle Scholar
  24. 24.
    R. Sotner, A. Lahiri, A. Kartci, N. Herencsar, J. Jerabek, K. Vrba, Design of novel precise quadrature oscillators employing ECCIIs with electronic control. Adv. Electr. Comput. Eng. 13(2), 65–72 (2013). doi: 10.4316/AECE.2013.02011 CrossRefGoogle Scholar
  25. 25.
    R. Sotner, J. Jerabek, N. Herencsar, Voltage differencing buffered/ inverted amplifiers and their applications for signal generation. Radioengineering 22(2), 490–504 (2013)Google Scholar
  26. 26.
    R. Sotner, N. Herencsar, J. Jerabek, J. Koton, T. Dostal, K. Vrba, Electronically controlled oscillator with linear frequency adjusting for four-phase or differential quadrature output signal generation. Int. J. Circuit Theory Appl. 42(12), 1264–1289 (2014). doi: 10.1002/cta.1919 CrossRefGoogle Scholar
  27. 27.
    R. Sotner, N. Herencsar, J. Jerabek, R. Dvorak, A. Kartci, T. Dostal, K. Vrba, New double current controlled CFA (DCC-CFA) based voltage mode oscillator with independent electronic control of oscillation condition and frequency. J. Electr. Eng. 64(2), 65–75 (2013). doi: 10.2478/jee-2013-0010 Google Scholar
  28. 28.
    R. Sotner, Z. Hrubos, N. Herencsar, J. Jerabek, T. Dostal, K. Vrba, Precise Electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Syst. Signal Process. 33(1), 1–35 (2014). doi: 10.1007/s00034-013-9623-2 CrossRefGoogle Scholar
  29. 29.
    S. Summart, Ch. Thongsopa, W. Jaikla, CCCIIs-based sinusoidal quadrature oscillators with non-interactive control of condition and frequency. Indian J. Pure Appl. Phys. 52(4), 277–283 (2014)Google Scholar
  30. 30.
    S. Summart, S. Tongsopa, W. Jaikla, OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Prz. Elektrotech. 88(7a), 14–17 (2012)Google Scholar
  31. 31.
    Texas Instruments. OPA860 Wide-bandwidth, operational transconductance amplifier (OTA) and buffer (online),
  32. 32.
    VCA810: High Gain Adjust Range, Wideband, variable gain amplifier, Texas Instruments [online] (2003), last modified 12/2010 [cit.28.7.2011].

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Roman Sotner
    • 1
    Email author
  • Jan Jerabek
    • 2
  • Lukas Langhammer
    • 2
  • Josef Polak
    • 2
  • Norbert Herencsar
    • 2
  • Roman Prokop
    • 3
  • Jiri Petrzela
    • 1
  • Winai Jaikla
    • 4
  1. 1.Department of Radio Electronics, Faculty of Electrical Engineering and CommunicationBrno University of Technology (BUT)BrnoCzech Republic
  2. 2.Department of Telecommunications, Faculty of Electrical Engineering and CommunicationBrno University of Technology (BUT)BrnoCzech Republic
  3. 3.Department of Microelectronics, Faculty of Electrical Engineering and CommunicationBrno University of Technology (BUT)BrnoCzech Republic
  4. 4.Department of Engineering Education, Faculty of Industrial EducationKing Mongkut’s Institute of Technology LadkrabangLadkrabang, BangkokThailand

Personalised recommendations