Advertisement

Circuits, Systems, and Signal Processing

, Volume 34, Issue 3, pp 1017–1025 | Cite as

Orthogonal Residue Sequences

  • Subhash Kak
Short Paper

Abstract

This paper presents a class of random orthogonal sequences associated with the number theoretic Hilbert transform. We present a constructive procedure for finding the random sequences for different modulus values. These random sequences have autocorrelation function that is zero everywhere excepting at the origin. These sequences may be used as keys in communication applications in a manner that is analogous to the use of PN sequences in spread spectrum systems.

Keywords

Random sequences Orthogonal sequences Number theoretic Hilbert transform Key distribution Code division 

Notes

Acknowledgments

This research was supported in part by the National Science Foundation Grant CNS-1117068.

References

  1. 1.
    R. Al-Aifari, A. Katsevich, Spectral analysis of the truncated Hilbert transform with overlap (2013) http://arxiv.org/abs/1302.6295
  2. 2.
    M.R. Arinson et al., Using the Hilbert transform for 3D visualization of differential interference contrast microscope images. Journal of Microscopy 199, 79–84 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Fuster, L.J. Garcia, An efficient algorithm to generate binary sequences for cryptographic purposes. Theor. Comput. Sci. 259, 679–688 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    N.S. Jayant, S. Kak, Uniform permutation privacy system, US Patent No. 4,100, 374, July 11, (1978)Google Scholar
  5. 5.
    S. Kak, The discrete Hilbert transform. Proc. IEEE 58, 585–586 (1970)CrossRefGoogle Scholar
  6. 6.
    S. Kak, N.S. Jayant, Speech encryption using waveform scrambling. Bell Syst. Tech. J. 56, 781–808 (1977)CrossRefGoogle Scholar
  7. 7.
    S. Kak, Hilbert transformation for discrete data. Int. J. Electron. 34, 177–183 (1973)CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Kak, The discrete finite Hilbert transform. Indian J. Pure Appl. Math. 8, 1385–1390 (1977)zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Kak, Multilayered array computing. Inf. Sci. 45, 347–365 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    S. Kak, A two-layered mesh array for matrix multiplication. Parallel Comput. 6, 383–385 (1988)CrossRefzbMATHGoogle Scholar
  11. 11.
    S. Kak, The number theoretic Hilbert transform. Circuits Syst. Signal Process. 33, 2539–2548 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Kandregula, The basic discrete Hilbert transform with an information hiding application. (2009) http://arxiv.org/abs/0907.4176
  13. 13.
    F.W. King, Hilbert Transforms (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  14. 14.
    V.K. Kotagiri, New results on the number theoretic Hilbert transform. (2013) http://arxiv.org/abs/1310.6924
  15. 15.
    I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform. Appl. Spectrosc. 54, 994–999 (2000)CrossRefGoogle Scholar
  16. 16.
    S.K. Padala, K.M.M. Prabhu, Systolic arrays for the discrete Hilbert transform. Circuits Devices Syst. IEE Proc. 144, 259–264 (1997)CrossRefGoogle Scholar
  17. 17.
    I.G. Roy, On robust estimation of discrete Hilbert transform of noisy data. Geophysics 78, 239–249 (2013)CrossRefGoogle Scholar
  18. 18.
    A.J. Viterbi, CDMA: Principles of Spread Spectrum Communication (Prentice Hall, Upper Saddle River, NJ, 1995)zbMATHGoogle Scholar
  19. 19.
    X. Wang, Y. Wu, B. Caron, Transmitter identification using embedded pseudo random sequences. IEEE Trans. Broadcast. 50, 244–252 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations