Advertisement

Circuits, Systems, and Signal Processing

, Volume 34, Issue 1, pp 321–340 | Cite as

Programmable Implementation of Diamond-Shaped Type-2 Membership Function in CMOS Technology

  • Ali Naderi Saatlo
  • Serdar Ozoguz
Short Paper

Abstract

In this paper, circuit implementation of diamond-shaped type-2 membership function in CMOS technology is presented. Designing of mixed analog/digital circuits provides a flexible configuration as well as the highly accurate performance, where analog circuits are employed to realize required functions, while the programmable units implemented using digital circuits. The current-mode approach is employed owing to the simple circuitry and intuitive configuration to design the circuits. The programmability of the circuit in terms of slopes, upper, and lower modal points enables the expert of the system to create other shapes of type-2 membership functions including rectangular, rhombus, triangular, and trapezoidal. For a particular set of programming parameters of diamond-shaped type-2 membership function, post layout simulation results of the proposed circuit using HSPICE and level 49 parameters (BSIM3v3) in 0.18 \(\mu \)m technology, demonstrate an average power consumption of 0.688 mW, maximum propagation delay of 8.7 ns and a relative error as low as \(\pm \)1 %. Furthermore, Monte Carlo analysis is carried out to ensure the robustness of the circuit performance against the process variation.

Keywords

Diamond-shaped Type-2 membership function Fuzzy controller Fuzzifier circuit Programmable 

Notes

Acknowledgments

The authors would like to thank Dr. Mortaza Aliasghary and Dr. Tohid Ghanbari Ghazijahani for their valuable remarks and fruitful discussions in improving the presentation of the paper.

References

  1. 1.
    M. Aliasghary, I. Eksin, M. Güzelkaya, T. Kumbasar, Design of an Interval Type-2 Fuzzy Logic Controller Based on Conventional PI Controller, Control & Automation (MED), 20th Mediterranean Conference on, 627–632, (2012).Google Scholar
  2. 2.
    M. Aliasghary, I. Eksin, M. Güzelkaya, T. Kumbasar, A design methodology and analysis for interval type-2 fuzzy PI/PD controllers. Int. J. Innov. Comput. Inf. Control 9(10), 4215–4230 (2013)Google Scholar
  3. 3.
    R. Amirkhanzadeh, A. Khoei, Kh Hadidi, A mixed-signal current-mode fuzzy logic controller. Int. J. Electron. Commun. 59(3), 177–184 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    J.N. Babanezhad, R. Gregorian, A programmable gain/loss circuit. IEEE J. Solid-State Circuits 22(6), 1082–1090 (1987)CrossRefGoogle Scholar
  5. 5.
    K. Basterretxea, J.M. Tarela, I. Del Campo, Digital Gaussian membership function circuit for neuro-fuzzy hardware. Electron. Lett. 42(1), 44–46 (2006)CrossRefGoogle Scholar
  6. 6.
    C. Byung-In, R. Frank, Chung-Hoon, Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    U. Cenk, G. Müjde, E. Ibrahim, Granular type-2 membership functions: a new approach to formation of footprint of uncertainty in type-2 fuzzy sets. J. Appl. Soft Comput. 13(8), 3713–3728 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Chuen-Yau, H. Yuan-Ta, L. Bin-Da, Circuit implementation of linguistic-hedge fuzzy logic controller in current-mode approach. IEEE Trans. Fuzzy Syst. 11(5), 624–646 (2003)CrossRefGoogle Scholar
  9. 9.
    B.Y. Darani, A. Khoei, Kh. Hadidi, A highly accurate programmable CMOS fuzzifier circuit, in Proceedings of 2010 International Conference on Electronic Device, System and Applications., Kuala Lumpur, Malaysia (2010).Google Scholar
  10. 10.
    D. Fernández, M. Verleysen, P. Thissen, J.L. Voz, A CMOS analog circuit for Gaussian functions. IEEE Trans. Circuits Syst. 43(1), 70–74 (1996)CrossRefGoogle Scholar
  11. 11.
    I.M. Filanovsky, A. Allam, Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I 48(7), 876–884 (2001)CrossRefGoogle Scholar
  12. 12.
    K. Gheysari, S. Mashoufi, Implementation of CMOS flexible fuzzy logic controller chip in current mode. Fuzzy Sets Syst. 185(1), 125–137 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    H. Hagras, Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)CrossRefGoogle Scholar
  14. 14.
    J.L. Huertas, S. Sanchez-Solano, I. Baturone, A. Barriga, Integrated circuit implementation of fuzzy controllers. IEEE J. Solid-State Circuits 31(7), 1051–1058 (1996)CrossRefGoogle Scholar
  15. 15.
    M. Kachare, J. Ramirez-Angulo, R.G. Carvajal, A.J. Lopez-Martin, New low-voltage fully programmable CMOS triangular/trapezoidal function Generator circuit. IEEE Trans. Circuits Syst. I 52(10), 2033–2042 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Khalilzadegan, A. Khoei, Kh Hadidi, Circuit implementation of a fully programmable and continuously slope tunable triangular/trapezoidal membership function generator. Analog Integr. Circuits Signal Process. 71(3), 561–570 (2012)CrossRefGoogle Scholar
  17. 17.
    M.A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak, A novel type-2 fuzzy membership function: application to the prediction of noisy data, Computational Intelligence for Measurement Systems and Applications (CIMSA), 2010 IEEE International Conference on, 128–133, (2010).Google Scholar
  18. 18.
    M. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. B Cybern. 41(5), 1395–1406 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Kuo-Jen, C. Chih-Jen, C. Shun-Feng, S. Hsin-Cheng, CMOS current-mode implementation of fractional-power functions. Circuits Syst. Signal Process. 31(1), 61–75 (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    A. Lotfi, A.C. Tsoi, Importance of membership functions: a comparative study on different learning methods for fuzzy inference systems, Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference on 3, 1791–1796 (1994)Google Scholar
  21. 21.
    J.M. Mendel, Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Mesri, A. Khoei, Kh. Hadidi, Design of a current-mode fully programmable Interval Type-2 fuzzifier for general-purpose applications, Electrical Engineering (ICEE), 2013 21st Iranian Conference on, 14–16 (2013).Google Scholar
  23. 23.
    J.M.A. Miguel, C.A. de La Cruz-Blas, A.J. Lopez-Martin, Fully differential current-mode CMOS triode translinear multiplier. IEEE Trans. Circuits Syst. II Express Briefs 58(1), 21–25 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Moshfe, P. Hoseini, A. Khoei, Kh. Hadidi, A fully programmable analog CMOS rational-powered membership function generator with continuously adjustable high precision parameters. Circuits Syst. Signal Process. 33(5), 1337–1352 (2014)Google Scholar
  25. 25.
    A. Naderi Saatlo, S. Ozoguz, CMOS high-precision loser-take-all circuit. IEEJ Trans. Electr. Electron. Eng., vol. 9, no. 6, (2014).Google Scholar
  26. 26.
    A. Naderi Saatlo, A. Khoei, Kh Hadidi, Circuit implementation of high-resolution rational-powered membership functions in standard CMOS technology. Int. J. Analog Integr. Circuits Signal Process. 65(2), 217–223 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Naderi, A. Khoei, Kh Hadidi, H. Ghasemzdeh, A new high speed and low power four-quadrant CMOS analog multiplier in current mode. Int. J. Electron. Commun. 63(9), 769–775 (2009)CrossRefGoogle Scholar
  28. 28.
    P. Prommee, K. Angkeaw, M. Somdunyakanok, K. Dejhan, CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr. Circuits Signal Processing. 61(1), 93–105 (2009)CrossRefGoogle Scholar
  29. 29.
    P. Prommee, K. Chattrakun, CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectron. J. 42(1), 52–62 (2011)CrossRefGoogle Scholar
  30. 30.
    P.M.S. Rocha Rizol, L. Mesquita, O. Saotome, G. Botura, Hardware implementation of type-2 programmable fuzzifier, Circuits and Systems (LASCAS), 2011 IEEE Second Latin American Symposium on, 23–25, (2011).Google Scholar
  31. 31.
    A.N. Taher, A. Soliman, C.M.O.S. Fully Programmable, traingular and trapezoidal function generators, Microelectronics, ICM 2008. International Conference on 64–67(2008), (2008)Google Scholar
  32. 32.
    D. Türkay, B. Adil, A. Koray, D. Alptekin, T. Burhan, Industrial applications of type-2 fuzzy sets and systems: a concise review. J. Comput. Ind. 62(2), 125–137 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Weiwei, L. Yinchao, S. Huafang, L. Junyin, A novel analog circuit design and test of a triangular membership function. Electron. Signal Process. 97, 727–733 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Xiaobing, L. Chao, Z. Tao, A four-quadrant analog multiplier under a single power supply voltage. Analog Integr. Circuits Signals Process. 71(3), 525–530 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Yazdanjouei, H. Feizy, A. Khoei, Kh. Hadidi, Design of a fully programmable analog interval type-2 triangular/trapezoidal fuzzifier, Mixed Design of Integrated Circuits and Systems (MIXDES), 2012 Proceedings of the 19th International Conference, 243–248, (2012).Google Scholar
  36. 36.
    B. Yong, V. Wei-Chou, L. Shen, C. Xiaohu, Sustainable transportation systems: planning, design, build, manage, and maintenance, in Proceedings of the Ninth Asia Pacific Transportation Development Conference, 2012 (2012), pp. 679–680Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Electrical-Electronics EngineeringIstanbul Technical University (ITU)Istanbul Turkey

Personalised recommendations