Advertisement

Circuits, Systems, and Signal Processing

, Volume 33, Issue 4, pp 1119–1133 | Cite as

Trajectory Switching Control of Robotic Manipulators Based on RBF Neural Networks

  • Lei YuEmail author
  • Shumin Fei
  • Jun Huang
  • Yu Gao
Article

Abstract

In this paper, we discuss the trajectory switching neural control problem for the switching model of a serial n-joint robotic manipulator. The key feature of this paper is to provide the dual design of the control law for the developed adaptive switching neural controller and the associated robust compensation control law. RBF Neural Networks (NNs) are employed to approximate unknown functions of robotic manipulators and a robust controller is designed to compensate the approximation errors of the neural networks and external disturbance. Via switched multiple Lyapunov function method, the adaptive updated laws and the admissible switching signals have been developed to guarantee that the resulting closed-loop system is asymptotically Lyapunov stable such that the joint position follows any given bounded desired output signal. Finally, we give a simulation example of a two-joint robotic manipulator to demonstrate the proposed methods and make a comparative analysis.

Keywords

Trajectory switching neural control RBF Neural Networks Robust compensation controller Multiple Lyapunov function 

Notes

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61104068, 61174076, 61104119), Natural Science Foundation of Jiangsu Province, China (BK20130331, BK20130322), China Postdoctoral Science Foundation funded projects (2013M530268, 2013M531401), Jiangsu Planned Projects for Postdoctoral Research Funds (1301150C), Natural Science Fund for Colleges and Universities in Jiangsu Province (13KJB510032), the Key Technology Research and Development Program of Suzhou, China (SG201319). The authors would like to thank the referees for their constructive comments.

References

  1. 1.
    A. Ailon, M.I. Gil, E.S. Choi, B.H. Ahn, Linear stabilizing controllers for electrically driven flexible-joint robots with uncertain parameters. Circuits Syst. Signal Process. 18(2), 131–147 (1999) CrossRefzbMATHGoogle Scholar
  2. 2.
    L.I. Allerhand, U. Shaked, Robust stability and stabilization of linear switched systems with dwell time. IEEE Trans. Autom. Control 56(2), 381–386 (2011) CrossRefMathSciNetGoogle Scholar
  3. 3.
    O. Barambones, V. Etxebarria, Robust neural control for robotic manipulators. Automatica 38(2), 235–242 (2002) CrossRefzbMATHGoogle Scholar
  4. 4.
    L. Bascetta, P. Rocco, Revising the robust-control design for rigid robot manipulators. IEEE Trans. Robot. 26(1), 180–187 (2010) CrossRefGoogle Scholar
  5. 5.
    M. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    T. Chen, A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8(11), 7679–7696 (2012) Google Scholar
  7. 7.
    Y. Chen, S. Fei, K. Zhang, Z. Fu, Control synthesis of discrete-time switched linear systems with input saturation based on minimum dwell time approach. Circuits Syst. Signal Process. 31(2), 779–795 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    C.S. Chiu, K.Y. Lian, T.C. Wu, Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators. Automatica 40, 2111–2119 (2004) zbMATHMathSciNetGoogle Scholar
  9. 9.
    S.S. Ge, T.H. Lee, C.J. Harris, Adaptive Neural Network Control of Robotic Manipulators (World Scientific, London, 1998) CrossRefGoogle Scholar
  10. 10.
    T.T. Han, S.S. Ge, T.T. Lee, Adaptive neural control for a class of switched nonlinear systems. Syst. Control Lett. 58, 109–118 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    G.B. Huang, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP-RBF) neural network. IEEE Trans. Neural Netw. 16, 57–67 (2005) CrossRefGoogle Scholar
  12. 12.
    N.V. Hung, H.D. Tuan, T. Narikiyo, P. Apkarian, Adaptive control for nonlinearly parameterized uncertainties in robot manipulators. IEEE Trans. Control Syst. Technol. 16(3), 458–468 (2008) CrossRefGoogle Scholar
  13. 13.
    J. Imura, T. Sugie, T. Yoshikawa, Adaptive robust control of robot manipulators-theory and experiment. IEEE Trans. Robot. Autom. 10(5), 705–710 (1994) CrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Jeon, M. Tomizuka, Learning hybrid force and position control of robot manipulators. IEEE Trans. Robot. Autom. 9, 423–431 (1996) CrossRefGoogle Scholar
  15. 15.
    F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of Robot Manipulators (Macmillan, New York, 1993) Google Scholar
  16. 16.
    D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003) CrossRefzbMATHGoogle Scholar
  17. 17.
    J. Lin, S. Fei, Q. Wu, Reliable H filtering for discrete-time switched singular systems with time-varying delay. Circuits Syst. Signal Process. 31(3), 1191–1214 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    F. Long, S. Fei, Neural networks stabilization and disturbance attenuation for nonlinear switched impulsive systems. Neurocomputing 71, 1741–1747 (2008) CrossRefGoogle Scholar
  19. 19.
    L.J. Long, J. Zhao, Control of switched nonlinear systems in p-normal form using multiple Lyapunov functions. IEEE Trans. Autom. Control 57(5), 1285–1291 (2012) CrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Purwar, I.N. Kar, A.N. Jha, Adaptive output feedback tracking control of robot manipulators using position measurements only. Expert Syst. Appl. 34, 2789–2798 (2008) CrossRefGoogle Scholar
  21. 21.
    X. Su, Z. Li, Y. Feng, New global exponential stability criteria for interval delayed neural networks. Proc of the institution of mechanical engineers part I. J. Syst. Control Eng. 225(11), 125–136 (2011) Google Scholar
  22. 22.
    Z.D. Sun, S.S. Ge, Analysis and synthesis of switched linear control systems. Automatica 41, 181–195 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    T. Sun, H. Pei, Y. Pan et al., Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74, 2377–2384 (2011) CrossRefGoogle Scholar
  24. 24.
    W. Sun, Z. Zhao, H. Gao, Saturated adaptive robust control of active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2012) CrossRefGoogle Scholar
  25. 25.
    W. Sun, H. Gao, O. Kaynak, Adaptive backstepping control for active suspension systems with hard constraints. IEEE Trans. Mechatron. 18(3), 1072–1079 (2013) CrossRefGoogle Scholar
  26. 26.
    P. Tomei, Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    C. Tomlin, G.J. Pappas, S. Sastry, Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    A. Turnip, K. Hong, Classifying mental activities from eeg-p300 signals using adaptive neural networks. Int. J. Innov. Comput. Inf. Control 8(9), 6429–6443 (2012) Google Scholar
  29. 29.
    P.P. Varaiya, Smart car on smart roads: problems of control. IEEE Trans. Autom. Control 38(2), 195–207 (1993) CrossRefMathSciNetGoogle Scholar
  30. 30.
    L. Wang, T. Chai, Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009) CrossRefGoogle Scholar
  31. 31.
    L. Wang, T. Chai, C. Yang, Neural-network-based contouring control for robotic manipulators in operational space. IEEE Trans. Control Syst. Technol. 20(4), 1073–1080 (2012) CrossRefGoogle Scholar
  32. 32.
    L. Wei, C. Cheng, A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market. Int. J. Innov. Comput. Inf. Control 8(8), 5559–5571 (2012) Google Scholar
  33. 33.
    L. Wu, Z. Feng, W. Zheng, Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21(9), 1396–1407 (2010) CrossRefGoogle Scholar
  34. 34.
    Z. Xiang, R. Wang, B. Jiang, Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Syst. Signal Process. 30(1), 73–87 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    G.M. Xie, L. Wang, Periodic stabilizability of switched linear control systems. Automatica 45, 2141–2148 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    R. Yang, H. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans. Syst. Man Cybern., Part B 39(2), 467–474 (2009) CrossRefGoogle Scholar
  37. 37.
    H.K. Young, L.L. Frank, M.D. Darren, Intelligent optimal control of robotic manipulators using neural networks. Automatica 36, 1355–1364 (2000) CrossRefzbMATHGoogle Scholar
  38. 38.
    L. Yu, S. Fei, X. Li, RBF neural networks-based robust adaptive tracking control for switched uncertain nonlinear systems. Int. J. Control. Autom. Syst. 10(2), 437–443 (2012) CrossRefGoogle Scholar
  39. 39.
    D. Zhang, L. Yu, Q.G. Wang et al., Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 827–834 (2012) CrossRefMathSciNetGoogle Scholar
  40. 40.
    G.D. Zong, L.L. Hou, Y.Q. Wu, Robust L2-L∞ guaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays. Circuits Syst. Signal Process. 30(1), 17–33 (2011) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mechanical and Electric EngineeringSoochow UniversitySuzhouChina
  2. 2.Key Laboratory of Measurement and Control of Complex Systems of EngineeringMinistry of EducationNanjingChina

Personalised recommendations