Circuits, Systems, and Signal Processing

, Volume 33, Issue 3, pp 939–957 | Cite as

A Segmentation-Based Chroma Intra Prediction Coding Scheme for H.264/AVC

  • Qingbo WuEmail author
  • Jian Xiong
  • Bing Luo
  • Zhengning Wang


In this paper, we propose a novel segmentation-based intra prediction coding scheme for low-bitrate video coding. Different coding schemes are separately designed for the luma and chroma components in our proposed method. The traditional block-based coding scheme is still used for the luma components, and the segmentation-based coding scheme is developed for the chroma components. The segmentation operation is used for the reconstructed luma components, which groups similar pixels together and produces a set of homogenous regions. Here, these local and homogenous regions are referred to superpixels. By utilizing the spatial correlation between the luma and chroma planes, we transfer the segmentation result of the luma components to the chroma components, which will not induce any side information in the chroma intra prediction coding. Instead of using the macroblock (MB) as the coding unit, the proposed method implements the chroma intra prediction in each superpixel, and the original pixels in each superpixel are employed to substitute the neighboring reconstructed samples in the prediction process. The experimental results show that the proposed method can achieve an average 0.20 dB and up to 0.63 dB coding gains in comparison to the directional intra prediction scheme for H.264/AVC low-bitrate video coding.


Segmentation Intra prediction Video coding H.264/AVC HEVC 



This work was partially supported by NSFC (Nos. 61179060 and 61101091), National High Technology Research and Development Program of China (863 Program, No. 2012AA011503), and Fundamental Research Funds for the Central Universities (ZYGX2012YB007).


  1. 1.
    R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012) CrossRefGoogle Scholar
  2. 2.
    G. Bjontegaard, Calculation of average PSNR differences between RD-curves, in ITU-T VCEG, (2001). VCEG-M33 Google Scholar
  3. 3.
    F. Bossen, Common test conditions and software reference configurations, in JCT-VC Meeting, Torino (2011). JCTVC-F900 Google Scholar
  4. 4.
    J. Chen, V. Seregin, W.J. Han, J. Kim, B. Jeon, CE6.a. 4: chroma intra prediction by reconstructed luma samples, in JCT-VC Meeting, Geneva (2011). JCTVC-E266 Google Scholar
  5. 5.
    I.H. Cho, J.H. Lee, W.H. Lee, D.S. Jeong, New intra luma prediction mode in H.264/AVC using collocated weighted chroma pixel value, in Advanced Concepts for Intelligent Vision Systems, vol. 4179, (2006), pp. 344–353 CrossRefGoogle Scholar
  6. 6.
    J.A. Choi, Y.S. Ho, Line-by-line intra 16×16 prediction for high-quality video coding, in IEEE International Conference on Multimedia and Expo (2010), pp. 1281–1286 Google Scholar
  7. 7.
    J.A. Choi, Y.S. Ho, Implicit line-based intra 16×16 prediction for H.264/AVC high-quality video coding. Circuits Syst. Signal Process. 31(5), 1829–1845 (2012) CrossRefGoogle Scholar
  8. 8.
    O. Divorra Escoda, P. Yin, C. Dai, X. Li, Geometry-adaptive block partitioning for video coding, in IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1 (2007), pp. 657–660 Google Scholar
  9. 9.
    P.L. Dragotti, M.N. Do, R. Shukla, M. Vetterli, On the compression of two-dimensional piecewise smooth functions, in IEEE International Conference on Image Processing (2001), pp. 14–17 Google Scholar
  10. 10.
    N.C. Francisco, N.M.M. Rodrigues, E.A.B. da Silva, M.B. de Carvalho, S.M.M. de Faria, V.M.M. da Silva, M.J.C.S. Reis, Multiscale recurrent pattern image coding with a flexible partition scheme, in IEEE International Conference on Image Processing (2008), pp. 141–144 Google Scholar
  11. 11.
    B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization with superpixel neighborhoods, in IEEE International Conference on Computer Vision (2009), pp. 670–677 Google Scholar
  12. 12.
  13. 13.
    ITU-T VCEG KTA Reference Software (2011).
  14. 14.
    A. Kassim, L. Siong, Performance of the color set partitioning in hierarchical tree scheme (CSPIHT) in video coding. Circuits Syst. Signal Process. 20, 253–270 (2001) CrossRefzbMATHGoogle Scholar
  15. 15.
    A. Kassim, E. Tan, W. Lee, 3D color set partitioning in hierarchical trees. Circuits Syst. Signal Process. 28, 41–53 (2009) CrossRefGoogle Scholar
  16. 16.
    B. Li, G.J. Sullivan, J. Xu, Common test conditions and software reference configurations, in JCT-VC Meeting, Torino (2011). JCTVC-F900 Google Scholar
  17. 17.
    H. Li, K.N. Ngan, Saliency model based face segmentation in head-and-shoulder video sequences. J. Vis. Commun. Image Represent. 19(5), 320–333 (2008) CrossRefGoogle Scholar
  18. 18.
    H. Li, K.N. Ngan, A co-saliency model of image pairs. IEEE Trans. Image Process. 20(12), 3365–3375 (2011) CrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Li, K.N. Ngan, Q. Liu, FaceSeg: automatic face segmentation for real-time video. IEEE Trans. Multimed. 11(1), 77–88 (2009) CrossRefGoogle Scholar
  20. 20.
    H. Li, K.N. Ngan, Z. Wei, Fast and efficient method for block edge classification and its application in H.264/AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 18(6), 756–768 (2008) CrossRefGoogle Scholar
  21. 21.
    D. Liu, X. Sun, F. Wu, Y.Q. Zhang, Edge-oriented uniform intra prediction. IEEE Trans. Image Process. 17(10), 1827–1836 (2008) CrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Mahoney, Data Compression Programs (2007) Google Scholar
  23. 23.
    F. Meng, H. Li, G. Liu, K.N. Ngan, Object co-segmentation based on shortest path algorithm and saliency model. IEEE Trans. Multimed. 14(5), 1429–1441 (2012) CrossRefGoogle Scholar
  24. 24.
    F. Meng, H. Li, G. Liu, K.N. Ngan, Image cosegmentation by incorporating color reward strategy and active contour model. IEEE Trans. Syst. Man Cybern. 43(2), 725–737 (2013) Google Scholar
  25. 25.
    A. Moore, S. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in IEEE Conference on Computer Vision and Pattern Recognition (2008), pp. 1–8 Google Scholar
  26. 26.
    J. Ohm, G. Sullivan, H. Schwarz, T.K. Tan, T. Wiegand, Comparison of the coding efficiency of video coding standards—including high efficiency video coding (hevc). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012) CrossRefGoogle Scholar
  27. 27.
    M. Ouaret, F. Dufaux, T. Ebrahimi, On comparing JPEG2000 and intraframe AVC, in SPIE Applications of Digital Image Processing XXIX, vol. 6312 (2006), p. U3120 Google Scholar
  28. 28.
    Y. Piao, H. Park, Adaptive interpolation-based divide-and-predict intra coding for h.264/avc, in IEEE Trans. Circuits Syst. Video Technol. (2010), pp. 1915–1921 Google Scholar
  29. 29.
    X. Ren, J. Malik, Learning a classification model for segmentation, in IEEE International Conference on Computer Vision (2003), pp. 10–17 CrossRefGoogle Scholar
  30. 30.
    I.E. Richardson, The H.264 Advanced Video Compression Standard, 2nd edn. (Wiley, New York, 2010) CrossRefGoogle Scholar
  31. 31.
    T.K. Tan, C.S. Boon, Y. Suzuki, Intra prediction by template matching, in IEEE International Conference on Image Processing (2006), pp. 1693–1696 Google Scholar
  32. 32.
    T.K. Tan, G. Sullivan, T. Wedi, Recommended simulation common conditions for coding efficiency experiments rev. 1, in ITU-T Q.6/SG16, Marrakech, Morocco (2007). VCEG-AE010 Google Scholar
  33. 33.
    ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4) AVC, Advanced Video Coding for Generic Audiovisual Services (2005) Google Scholar
  34. 34.
    P. Topiwala, T. Tran, W. Dai, Performance comparison of jpeg2000 and h. 264/avc high profile intra-frame coding on hd video sequences, in SPIE Applications of Digital Image Processing XXIX, vol. 6312 (2006), p. T3120 Google Scholar
  35. 35.
    Z. Wei, K.N. Ngan, H. Li, An efficient intra mode selection algorithm for H.264 based on edge classification and rate-distortion estimation. Signal Process. Image Commun. 23(9), 699–710 (2008) CrossRefGoogle Scholar
  36. 36.
    T. Wiegand, B. Girod, Lagrange multiplier selection in hybrid video coder control, in IEEE International Conference on Image Processing, vol. 3 (2001), pp. 542–545 Google Scholar
  37. 37.
    T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003) CrossRefGoogle Scholar
  38. 38.
    Q. Wu, H. Li, Mode dependent down-sampling and interpolation scheme for high efficiency video coding. Signal Process. Image Commun. 28(6), 581–596 (2013) CrossRefGoogle Scholar
  39. 39.
    Y. Ye, M. Karczewicz, Improved H.264 intra coding based on bi-directional intra prediction, directional transform, and adaptive coefficient scanning, in IEEE International Conference on Image Processing (2008), pp. 2116–2119 Google Scholar
  40. 40.
    C. Yeo, Y.H. Tan, Z. Li, S. Rahardja, Chroma intra prediction using template matching with reconstructed luma components, in IEEE International Conference on Image Processing (2011), pp. 1637–1640 Google Scholar
  41. 41.
    L. Zhang, S. Ma, W. Gao, Position dependent linear intra prediction for image coding, in IEEE International Conference on Image Processing (2010), pp. 2877–2880 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qingbo Wu
    • 1
    Email author
  • Jian Xiong
    • 1
  • Bing Luo
    • 1
  • Zhengning Wang
    • 1
  1. 1.School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations