Circuits, Systems, and Signal Processing

, Volume 32, Issue 4, pp 1523–1536

A Design Example of a Fractional-Order Kerwin–Huelsman–Newcomb Biquad Filter with Two Fractional Capacitors of Different Order

  • Madhab Chandra Tripathy
  • Karabi Biswas
  • Siddhartha Sen
Article

Abstract

Design, realization and performance studies of continuous-time fractional order Kerwin–Huelsman–Newcomb (KHN) biquad filters have been presented. The filters are constructed using two fractional order capacitors (FC) of orders α and β (0<α, β≤1). The frequency responses of the filters, obtained experimentally have been compared with simulated results using MATLAB/SIMULINK and also with PSpice (Cadence PSD 14.2), where the fractional order capacitor is approximated by a domino ladder circuit. It has been observed that fractional order filters can give better performance in certain aspects compared to integer order filters. The effects of the exponents (α and β) on bandwidth and stability of the realized filter have been examined. Sensitivity analysis of the realized fractional order filter has also been carried out to investigate the deviation of the performance due to the parameter variation.

Keywords

Fractional order capacitor KHN biquad filter Constant phase angle Domino ladder circuit Fractional order filter 

References

  1. 1.
    W. Ahmad, R. El-Khazali, Fractional order passive low-pass filters, in Proceedings of the ICECS, (2003), pp. 160–163 Google Scholar
  2. 2.
    P. Ahmadi, B. Maundy, A.S. Elwakil, L. Belostotski, Band-pass filters with high quality factors and asymmetric-slope characteristics, in IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), August 2011, pp. 1–4 Google Scholar
  3. 3.
    K. Biswas, S. Sen, P.K. Dutta, Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II 53, 802–806 (2006) CrossRefGoogle Scholar
  4. 4.
    R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional Order Systems: Modeling and Control Applications (World Scientific, Singapore, 2010) Google Scholar
  5. 5.
    R. Caponetto, L. Fortuna, D. Porto, A new tuning strategy for a non-integer order pid controller, in First IFAC Workshop on Fractional Differentiation and Its Application, vol. 40, (2004), pp. 168–173 Google Scholar
  6. 6.
    G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)(1/n) by regular Newton process. IEEE Trans. Circuits Syst. 11, 213–214 (1964) Google Scholar
  7. 7.
    R.C. Dorf, R.H. Bishop, Modern Control Systems (Addison-Wesley, New York, 1990) Google Scholar
  8. 8.
    S.A.A. El-Salam, A.M.A. El-Sayed, On the stability of some fractional-order nonautonomous systems. Electron. J. Qual. Theory Differ. Equ. 6, 1–14 (2007) Google Scholar
  9. 9.
    S. Franco, Design with Operational Amplifier and Analog Integrated Circuits (Tata McGraw-Hill, New Delhi, 2002) Google Scholar
  10. 10.
    T. Freeborn, B. Maundy, A. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst., 548–561 (2010). doi:10.1049/iet-cds.2010.0141
  11. 11.
    T. Freeborn, B. Maundy, A. Elwakil, Towards the realization of fractional step filters, in IEEE International Symposium on Circuits and Systems, June 2010, pp. 1037–1040 Google Scholar
  12. 12.
    M. Gupta, P. Varshney, G.S. Visweswaran, Digital fractional-order differentiator and integrator models based on first-order and higher order operators. Int. J. Circuit Theory Appl. 39(5), 461–474 (2011) CrossRefGoogle Scholar
  13. 13.
    B.T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011) MATHCrossRefGoogle Scholar
  14. 14.
    B.T. Krishna, K.V.V.S. Reddy, Active and passive realization of fractance device of order 1/2. Act. Passive Electron. Compon. 2008, 1–5 (2008) CrossRefGoogle Scholar
  15. 15.
    B. Maundy, A.S. Elwakil, T.J. Freeborn, On the practical realization of higher order filters with a fractional stepping. Signal Process. 91, 484–491 (2011) MATHCrossRefGoogle Scholar
  16. 16.
    D. Mondal, K. Biswas, Performance study of fractional order integrator using single component fractional order element. IET Circuits Devices Syst. 5, 334–342 (2011) CrossRefGoogle Scholar
  17. 17.
    M. Moshrefi, J.K. Hammond, Physical and geometrical interpretation of fractional operator. Int. J. Appl. Math. Comput. Sci. 335B(6), 1077–1086 (1998) MATHGoogle Scholar
  18. 18.
    K.B. Oldham, C.G. Zoski, Analogue instrumentation for processing polarographic data. J. Electroanal. Chem. 157, 27–51 (1983) CrossRefGoogle Scholar
  19. 19.
    I. Podlubny, Fractional-order system and \(\mbox{\scshape{pi}}^{\alpha}\mbox{\scshape{d}}^{\beta}\) controller. IEEE Trans. Autom. Control 44(1), 708–719 (1999) MathSciNetCrossRefGoogle Scholar
  20. 20.
    A.G. Radwan, A.S. Elwakil, A. Soliman, First-order filter generalized to the fractional domain. J. Circuits Syst. Comput. 17(4), 55–66 (2008) CrossRefGoogle Scholar
  21. 21.
    A.G. Radwan, A. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuit examples. Int. J. Circuit Theory Appl. 36, 473–492 (2008) MATHCrossRefGoogle Scholar
  22. 22.
    A.G. Radwan, A.S. Elwakil, A. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009) CrossRefGoogle Scholar
  23. 23.
    A.G. Radwan, A. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear system with fractional order elements. Chaos Solitons Fractals 40, 2317–2328 (2009) MATHCrossRefGoogle Scholar
  24. 24.
    A.S. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford University Press, London, 2007) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Madhab Chandra Tripathy
    • 1
  • Karabi Biswas
    • 1
  • Siddhartha Sen
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations