Circuits, Systems, and Signal Processing

, Volume 32, Issue 3, pp 945–957

Electronically Tunable Single-Input Five-Output Voltage-Mode Universal Filter Using VDTAs and Grounded Passive Elements

  • Jetsdaporn Satansup
  • Tattaya Pukkalanun
  • Worapong Tangsrirat
Article

Abstract

This paper presents a possible usage of the voltage differencing transconductance amplifier (VDTA) for the design of an electronically tunable single-input five-output voltage-mode universal filter. The presented filter is constructed using two VDTAs, two capacitors and two resistors that are all grounded. The circuit simultaneously realizes lowpass (LP), bandpass (BP), highpass (HP), bandstop (BS) and allpass (AP) filtering responses, without changing the circuit topology. The circuit is capable of providing an independent electronic control of the natural angular frequency (ω0) and the quality factor (Q) through the transconductance gains of the VDTAs. By simply adjusting the transconductance ratio, a high-Q filter can also be obtained. Because of the high-input impedance of the circuit, it is advantageous for cascade connection. To support the theoretical analysis, the properties of the designed filter have been verified by PSPICE simulation results.

Keywords

Voltage differencing transconductance amplifier (VDTA) Universal filter Voltage-mode circuit 

References

  1. 1.
    M.T. Abuelma’Atti, H.A. Al-Zaher, New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integr. Circuits Signal Process. 16, 239–244 (1998) CrossRefGoogle Scholar
  2. 2.
    A.F. Arbel, L. Goldminz, Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 2, 243–255 (1992) CrossRefGoogle Scholar
  3. 3.
    D. Biolek, CDTA-Building block for current-mode analog signal processing, in Proceedings of the ECCTD’03, (2003), pp. 397–400 Google Scholar
  4. 4.
    D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008) Google Scholar
  5. 5.
    H.P. Chen, Universal voltage-mode filter using only plus-type DDCCs. Analog Integr. Circuits Signal Process. 50(2), 137–139 (2007) CrossRefGoogle Scholar
  6. 6.
    H.P. Chen, Voltage-mode FDCCII-based universal filters. AEÜ, Int. J. Electron. Commun. 62, 320–323 (2008) CrossRefGoogle Scholar
  7. 7.
    H.P. Chen, Versatile universal voltage-mode filter employing DDCCs. AEÜ, Int. J. Electron. Commun. 63(1), 78–82 (2009) CrossRefGoogle Scholar
  8. 8.
    H.P. Chen, S.S. Shen, A versatile universal capacitor-grounded voltage-mode filter using DVCCs. ETRI J. 29(4), 470–476 (2007) MathSciNetCrossRefGoogle Scholar
  9. 9.
    W.Y. Chiu, J.W. Horng, Voltage-mode biquadratic filters with one input and five outputs using DDCCs. Indian J. Eng. Mater. Sci. 18, 97–101 (2011) CrossRefGoogle Scholar
  10. 10.
    W.Y. Chiu, J.W. Horng, S.T. Cheng, Universal filter with one input and five outputs using DDCCs, in Proceedings of 2008 Int. Sym. Intelligent Sig. Process. Commun. (ISPACS2008) (2008) Google Scholar
  11. 11.
    W.Y. Chiu, J.W. Horng, Y.S. Guo, C.Y. Tseng, DDCC based voltage-mode one input five outputs biquadratic filter with high-input impedance, in Proceedings of 13th Int. Sym. Integrated Circuits (ISIC-2011) (2011), pp. 39–42 CrossRefGoogle Scholar
  12. 12.
    W.Y. Chiu, J.W. Horng, H. Lee, C.C. Huang, DVCC-based voltage-mode biquadratic filter with high-input impedance, in Proceedings of 2010 Fifth IEEE Int. Sym. Electron. Design, Test & Applications (2010), pp. 121–125 CrossRefGoogle Scholar
  13. 13.
    W.Y. Chiu, J.W. Horng, S.S. Yang, High-input impedance voltage-mode universal biquadratic filter with one input and five outputs using DDCCs, in Proceedings of 4th IEEE Int. Sym. on Electron. Design, Test & Applications (2008), pp. 346–350 CrossRefGoogle Scholar
  14. 14.
    S.S. Gupta, R. Senani, New voltage-mode/current-mode universal biquad filter using unity-gain cells. Int. J. Electron. 93(11), 769–775 (2006) CrossRefGoogle Scholar
  15. 15.
    J.W. Horng, Voltage-mode universal biquadratic filter with one input and five outputs using OTAs. Int. J. Electron. 89(9), 729–737 (2002) CrossRefGoogle Scholar
  16. 16.
    J.W. Horng, Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integr. Circuits Signal Process. 62, 407–413 (2010) CrossRefGoogle Scholar
  17. 17.
    J.W. Horng, C.L. Hou, C.M. Chang, H.P. Chou, C.T. Lin, High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits Syst. Signal Process. 25(6), 767–777 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    J.W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, Voltage-mode universal biquadratic filter with one input and five outputs. Analog Integr. Circuits Signal Process. 47, 73–83 (2006) CrossRefGoogle Scholar
  19. 19.
    J.W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, H.Y. Wei, Voltage-mode universal biquadratic filter with one input and five outputs using MOCCIIs. Comput. Electr. Eng. 31, 190–202 (2005) MATHCrossRefGoogle Scholar
  20. 20.
    K. Kumar, K. Pal, Voltage-mode universal biquadratic filter using FTFN and OTA. J. Electr. Electron. Eng. 9(2), 1083–1087 (2009) Google Scholar
  21. 21.
    C.N. Lee, C.M. Chang, Single FDCCII-based mixed-mode biquad filter with eight outputs. AEÜ, Int. J. Electron. Commun. 63, 736–742 (2009) CrossRefGoogle Scholar
  22. 22.
    S. Minaei, E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filter. Circuits Syst. Signal Process. 29, 295–309 (2010) MATHCrossRefGoogle Scholar
  23. 23.
    N. Pandey, S.K. Paul, Differential difference current conveyor transconductance amplifier: a new analog building block for signal processing. J. Electr. Comput. Eng. 2011, 361384 (2011). doi:10.1155/2011/361384 MathSciNetGoogle Scholar
  24. 24.
    R. Prokop, V. Musil, New modern circuit block CCTA and some its applications, in Proceedings of the 14th Int. Scientific and Applied Science Conf. Electronics (ET’2005) (2005), pp. 93–98 Google Scholar
  25. 25.
    Z. Wang, 2-MOSFET transistor with extremely low distortion for output reaching supply voltages. Electron. Lett. 26, 951–952 (1990) CrossRefGoogle Scholar
  26. 26.
    A. Yesil, F. Kacar, H. Kuntman, New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3), 632–637 (2011) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jetsdaporn Satansup
    • 1
  • Tattaya Pukkalanun
    • 1
  • Worapong Tangsrirat
    • 1
  1. 1.Faculty of EngineeringKing Mongkut’s Institute of Technology Ladkrabang (KMITL)BangkokThailand

Personalised recommendations