Advertisement

Circuits, Systems, and Signal Processing

, Volume 32, Issue 2, pp 525–539 | Cite as

Fault Diagnosis of Analog Circuits Using Systematic Tests Based on Data Fusion

Article

Abstract

An analog fault diagnosis approach using a systematic step-by-step test is proposed for fault detection and location in analog circuits with component tolerance and limited accessible nodes. First, by considering soft faults and component tolerance, statistics-based fault detection criteria are established to determine whether a circuit is faulty by measuring accessible node voltages. For a faulty circuit, fuzzy fault verification is performed using the accessible node voltages. Furthermore, using an approximation technique, the most likely faulty elements are identified with a limited number of circuit gain measurements at selected frequencies. Finally, employing the D-S evidence theory, synthetic decision is made to locate faults according to the results of fault verification and estimation. Unlike other methods which use a single diagnosis method or a particular type of measurement information, the proposed approach makes use of the redundancy of different types of measurement information and the combined use of different diagnosis methods so as to improve diagnosis accuracy.

Keywords

Analog circuit Fault detection Fault verification Fault estimation Data fusion 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grants 61173108, 60973032 and 60673084, and Hunan Provincial Natural Science Foundation of China under Grants 06JJ4075 and 10JJ2045.

References

  1. 1.
    C. Alippi, M. Catelani, A. Fort, M. Mugnaini, SBT soft fault diagnosis in analog electronic circuits: a sensitivity-based approach by randomized algorithms. IEEE Trans. Instrum. Meas. 51(5), 1116–1125 (2002) CrossRefGoogle Scholar
  2. 2.
    C. Alippi, M. Catelani, A. Fort, M. Mugnaini, Automated selection of test frequencies for fault diagnosis in analog electronic circuits. IEEE Trans. Instrum. Meas. 54(3), 1033–1044 (2005) CrossRefGoogle Scholar
  3. 3.
    F. Aminian, M. Aminian, H.W. Collins Jr., Analog fault diagnosis of actual circuits using neural networks. IEEE Trans. Instrum. Meas. 51(3), 544–550 (2002) CrossRefGoogle Scholar
  4. 4.
    M. Aminian, F. Aminian, A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor. IEEE Trans. Instrum. Meas. 56(5), 1546–1554 (2007) CrossRefGoogle Scholar
  5. 5.
    J.W. Bandler, A.E. Salama, Fault diagnosis of analog circuits. Proc. IEEE 73(8), 1279–1327 (1985) CrossRefGoogle Scholar
  6. 6.
    O. Basir, F. Karray, H. Zhu, Connectionist-based Dempster–Shafer evidential reasoning for data fusion. IEEE Trans. Neural Netw. 16(6), 1513–1530 (2005) CrossRefGoogle Scholar
  7. 7.
    M. Catelani, A. Fort, Soft fault detection and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks. IEEE Trans. Instrum. Meas. 51(2), 196–202 (2002) CrossRefGoogle Scholar
  8. 8.
    K.H. Chung, P.R. Shepherd, F. Eberhardt, W. Tenten, Hierarchical fault diagnosis of analog integrated circuits. IEEE Trans. Circuits Syst. I 48(8), 921–929 (2001) MATHCrossRefGoogle Scholar
  9. 9.
    Y. Deng, Y. Shi, W. Zhang, An approach to locate parametric faults in nonlinear analog circuits. IEEE Trans. Instrum. Meas. 61(2), 358–367 (2012) CrossRefGoogle Scholar
  10. 10.
    M.G. Dimopoulos, A.D. Spyronasios, D.K. Papakostas, Circuit implementation of a supply current spectrum test method. IEEE Trans. Instrum. Meas. 59(10), 2660–2670 (2010) CrossRefGoogle Scholar
  11. 11.
    F. Grasso, A. Luchetta, S. Manetti, M.C. Piccirilli, A method for the automatic selection of test frequencies in analog fault diagnosis. IEEE Trans. Instrum. Meas. 56(6), 2322–2329 (2007) CrossRefGoogle Scholar
  12. 12.
    Z. Guo, J. Savir, Coefficient-based test of parametric faults in analog circuits. IEEE Trans. Instrum. Meas. 55(1), 150–157 (2006) CrossRefGoogle Scholar
  13. 13.
    V.-N. Huynh, Y. Nakamori, T.-B. Ho, T. Murai, Multiple-attribute decision making under uncertainty: the evidential reasoning approach revisited systems. IEEE Trans. Syst. Man Cybern., Part A 36(4), 804–822 (2006) CrossRefGoogle Scholar
  14. 14.
    A. Khouas, A. Derieux, Fault simulation of analog circuits under parameter variations. J. Electron. Test. 16, 269–278 (2000) CrossRefGoogle Scholar
  15. 15.
    F. Li, P.-Y. Woo, Fault detection for linear analog IC—the method of short-circuit admittance parameters. IEEE Trans. Circuits Syst. I 49(1), 105–108 (2002) CrossRefGoogle Scholar
  16. 16.
    R. Liao, H. Zheng, S. Grzybowski, An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning. IEEE Trans. Power Deliv. 26(2), 1111–1118 (2011) CrossRefGoogle Scholar
  17. 17.
    F. Liu, S. Ozev, Statistical test development for analog circuits under high process variations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 26(8), 1465–1477 (2007) CrossRefGoogle Scholar
  18. 18.
    D.K. Papakostas, A.A. Hatzopoulos, Improved analogue fault coverage estimation using probabilistic analysis. Int. J. Circuit Theory Appl. 38(5), 503–514 (2010) MATHGoogle Scholar
  19. 19.
    D.K. Papakostas, A.A. Hatzopoulos, Impact of parameter covariance on fault detectability estimation of analogue and mixed-mode circuits. IEE Proc., Circuits Devices Syst. 150(5), 434–438 (2003) CrossRefGoogle Scholar
  20. 20.
    D.K. Papakostas, A.A. Hatzopoulos, Estimation of statistical variables for analogue fault detectability evaluation. IEE Proc., Circuits Devices Syst. 146(6), 350–354 (1999) CrossRefGoogle Scholar
  21. 21.
    D.K. Papakostas, A.A. Hatzopoulos, A unified procedure for fault detection of analogue and mixed-mode circuits using magnitude and phase components of the power supply current spectrum. IEEE Trans. Instrum. Meas. 57(11), 2589–2595 (2008) CrossRefGoogle Scholar
  22. 22.
    M. Peng, M. Shen, J. He, Data fusion based fault diagnosis of analog circuits, in Proc. WCECS, San Francisco, USA (2008), pp. 161–165 Google Scholar
  23. 23.
    M. Peng, Y. He, A new fault dictionary method for diagnosis of tolerance circuit, in Proc. Int Conf. CCCT, vol. I, Austin, USA (2004), pp. 378–382 Google Scholar
  24. 24.
    M. Peng, J. Wang, C.K. Tse, M. Shen, Complex network application in fault diagnosis of analog circuit. Int. J. Bifurc. Chaos 21(5), 1323–1330 (2011) CrossRefGoogle Scholar
  25. 25.
    A. Petraglia, J.M. Canive, M.R. Petraglia, Efficient parametric fault detection in switched-capacitor filters. IEEE Des. Test Comput. 23(1), 58–66 (2006) CrossRefGoogle Scholar
  26. 26.
    J. Plusquellic, A. Singh, C. Patel, A. Gattiker, Power supply transient signal analysis for defect-oriented test. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(3), 370–374 (2003) CrossRefGoogle Scholar
  27. 27.
    A.D. Spyronasios, M.G. Dimopoulos, A.A. Hatzopoulos, Wavelet analysis for the detection of parametric and catastrophic faults in mixed-signal circuits. IEEE Trans. Instrum. Meas. 60(6), 2025–2038 (2011) CrossRefGoogle Scholar
  28. 28.
    M. Tadeusiewicz, S. Halgas, M. Korzybski, An algorithm for soft-fault diagnosis of linear and nonlinear circuits. IEEE Trans. Circuits Syst. I 49(11), 1648–1653 (2002) MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Tan, M. Peng, Minimization of ambiguity in parametric fault diagnosis of analog circuits: a complex network approach. Appl. Math. Comput. 219, 408–415 (2012) MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Wang, S. Yang, A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math. IEEE Trans. Circuits Syst. I 52(10), 2118–2127 (2005) MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Worsman, M.W.T. Wong, Non-linear analog circuit fault diagnosis with large change sensitivity. Int. J. Circuit Theory Appl. 28(3), 281–303 (2000) MATHCrossRefGoogle Scholar
  32. 32.
    C. Yang, S. Tian, B. Long, F. Chen, Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis. IEEE Trans. Instrum. Meas. 60(1), 176–185 (2011) CrossRefGoogle Scholar
  33. 33.
    L. Yuan, Y. He, J. Huang, A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor. IEEE Trans. Instrum. Meas. 59(3), 586–595 (2010) CrossRefGoogle Scholar
  34. 34.
    D. Zhu, Y. Yang, W. Li, Blind fault diagnosis algorithm for integrated circuit based on the CPN neural networks. Lect. Notes Comput. Sci. 3174, 51–63 (2004) Google Scholar
  35. 35.
    R. Zou, The principle and method for analog circuit diagnosis (Middle-China, Univ., Wuhan, 1989) Google Scholar
  36. 36.
    R. Zou, J.M. Huang, Fault location of linear nonreciprocal circuit with tolerance, in Proc. IEEE ISCAS, (1988), pp. 1163–1166 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.Department of Electronic and Information EngineeringHong Kong Polytechnic UniversityHong KongChina
  3. 3.College of Computer ScienceBeijing University of Information Science and TechnologyBeijingChina
  4. 4.Electronics and Information SchoolYangtze UniversityHubeiChina

Personalised recommendations