Circuits, Systems, and Signal Processing

, Volume 32, Issue 2, pp 415–431 | Cite as

An 8-Bit Digitally Controlled Programmable Phase Shifter Circuit for Sinusoidal Signals with 252 Phase Control Range

  • Luis Abraham Sánchez Gaspariano
  • Clara Iliana Martínez Gómez
  • José Miguel Rocha Pérez
  • Jesús Ezequiel Molinar Solís
  • Jesús Manuel Muñoz Pacheco
  • Carlos Muñíz Montero
  • Alejandro Díaz Sánchez


In this paper, the synthesis, design, and implementation of a programmable phase shifter circuit for sinusoidal signals is presented. The proposed circuit, built-up herein with operational amplifiers (OPAMPs), high precision resistors and low voltage switches, consists of a digitally controlled amplitude attenuator in combination with a single-tone orthogonalizer. Experimental results agree with theoretical background: the attained phase range was 252 in 256 steps with a median step of 0.9. The inaccuracy of the circuit was determined to be of 0.03 %. Contrary to other OPAMP approaches for sinusoidal signals reported in the literature and based on a first-order all-pass filter structure, the approximation suggested in this work is based on a different concept. The achieved results demonstrate the functionality of the system for the case of a sinusoidal signal with frequency of 1 kHz. Notwithstanding, the proposed architecture can be extended to operate at higher frequencies by using different building blocks with larger bandwidth. Furthermore, it can be extended as well to work out with other periodic input waveforms, like triangular shapes or square waves, with the use of an appropriate orthogonalizer.


Phase shifter circuit Vector projection Programmable amplitude attenuator Analog orthogonalizer 


  1. 1.
    M.T. Abuelma’Atti, U. Baroudi, A programmable phase shifter for sinusoidal signals. Act. Passive Electron. Compon. 21, 107–112 (1998) CrossRefGoogle Scholar
  2. 2.
    M.A. Al-Absi, A simple low cost frequency-independent phase shifter. Arab. J. Sci. Eng. 34(18), 145–152 (2009) Google Scholar
  3. 3.
    F.R. Coughlin, F.F. Driscoll, Operational Amplifiers and Linear Integrated Circuits, 6th edn. (Prentice Hall, New York, 2001) Google Scholar
  4. 4.
    H.J. De Los Santos, G. Fischer, H.A.C. Tilmans, J.T.M. van Beek, RF MEMS for ubiquitous wireless connectivity. Part II. Application. IEEE Microw. Mag. 5(4), 50–65 (2005) CrossRefGoogle Scholar
  5. 5.
    S.H. Galal, H.F. Ragaie, M.S. Tawfik, RC sequence asymmetric polyphase networks for RF integrated transceivers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 47(1), 18–27 (2000) CrossRefGoogle Scholar
  6. 6.
    H.P. Hsu, K.J. Hsu, Applied Fourier Analysis, 1st edn. Harcourt Brace Jovanovich College Outline Series (1991) Google Scholar
  7. 7.
    S. Koul, B. Bhat, Microwave and Millimeter Wave Phase Shifters, Vol. II (Artech House, Norwood, 1991) Google Scholar
  8. 8.
    A. Kraskov et al., Extracting phases from aperiodic signals (2004). arXiv:cond-mat/0409382
  9. 9.
    S. Lang, Introduction to Linear Algebra, 2nd edn. (Springer, Berlin, 1986) MATHCrossRefGoogle Scholar
  10. 10.
    E. Mensink, E.A.M. Klumperink, B. Nauta, Distortion cancellation by polyphase multipath circuits. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(9), 1785–1794 (2005) CrossRefGoogle Scholar
  11. 11.
    S. Minaei, E. Yuce, High input impedance NMOS-based phase shifter with minimum number of passive elements. Circuits Syst. Signal Process. (2012). doi:10.1007/s00034-011-9290-0 MathSciNetMATHGoogle Scholar
  12. 12.
    S. Oztayfun, S. Kilinc, A. Celebi, U. Cam, A new electronically tunable phase shifter employing current-controlled current conveyors. AEÜ, Int. J. Electron. Commun. 62(3), 228–231 (2008) CrossRefGoogle Scholar
  13. 13.
    P. Padilla, A. Muñoz-Acevedo, M. Sierra-Castañer, Low loss 360° Ku band electronically reconfigurable phase shifter. AEÜ, Int. J. Electron. Commun. 64(11), 1100–1104 (2010) CrossRefGoogle Scholar
  14. 14.
    B. Robertson, F.D. Ho, T. Hudson, Optimization of MEMS Ku-band phase shifter, in Digest of papers of the IEEE 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (2004), p. 265 CrossRefGoogle Scholar
  15. 15.
    A.D. Skoog, S.R. Crouch, F.J. Holler, Principles of Instrumental Analysis, 6th edn. (Brooks/Cole Cengage Learning, Belmont, 2008) Google Scholar
  16. 16.
    H. Song, A general method to VLSI polyphase filter analysis and design for integrated RF applications, in IEEE International SOCC Conference (2006), pp. 31–34 Google Scholar
  17. 17.
    S. Subhan, E.A.M. Klumperink, B. Nauta, Towards suppression of all harmonics in a polyphase multipath transmitter, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2011), pp. 2185–2189 Google Scholar
  18. 18.
    F. Xiong, Digital Modulation Techniques, 2nd edn. (Artech House, Norwood, 2006) MATHGoogle Scholar
  19. 19.
    T. Yu, G.M. Rebeiz, A 24 GHz 6-bit CMOS phased-array receiver. IEEE Microw. Wirel. Compon. Lett. 18(6), 422–424 (2008) CrossRefGoogle Scholar
  20. 20.
    E. Yuce, A novel CMOS-Based Voltage-Mode First-Order phase shifter employing a grounded capacitor. Circuits Syst. Signal Process. 29(2), 235–245 (2010). doi:10.1007/s00034-009-9143-2 MATHCrossRefGoogle Scholar
  21. 21.
    T.V. Zlotnikov et al., A 45 nm CMOS miniature phase shifter with constant amplitude response. Microelectron. J. 42(10), 1143–1150 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Luis Abraham Sánchez Gaspariano
    • 1
  • Clara Iliana Martínez Gómez
    • 1
  • José Miguel Rocha Pérez
    • 2
  • Jesús Ezequiel Molinar Solís
    • 3
  • Jesús Manuel Muñoz Pacheco
    • 4
  • Carlos Muñíz Montero
    • 1
  • Alejandro Díaz Sánchez
    • 2
  1. 1.Universidad Politécnica de PueblaJuan C. BonillaMexico
  2. 2.Instituto Nacional de Astrofísica, Óptica y ElectrónicaSanta María TonantzintlaMexico
  3. 3.Universidad Autónoma del Estado de MéxicoTierra BlancaMexico
  4. 4.Benemérita Universidad Autónoma de PueblaJardínez de San ManuelMexico

Personalised recommendations