Circuits, Systems, and Signal Processing

, Volume 32, Issue 1, pp 387–400

Stability and H Performance Analysis of Switched Stochastic Neutral Systems

Short Paper

Abstract

This paper is concerned with the problems of stability and H performance for a class of switched stochastic neutral delay systems. By applying the average dwell time method, sufficient condition is first derived to guarantee the mean-square exponential stability of the switched stochastic neutral system. Then, the condition on a weighted H performance is proposed. The corresponding results are all formulated in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.

Keywords

Switched stochastic systems Neutral systems Time delay H performance Average dwell time 

References

  1. 1.
    M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    W. Chang, C. Ku, P. Huang, Robust fuzzy control via observer feedback for passive stochastic fuzzy systems with time-delay and multiplicative noise. Int. J. Innov. Comput., Inf. Control 7(1), 345–364 (2011) Google Scholar
  3. 3.
    G. Chen, Y. Shen, S. Zhu, H control for neutral linear stochastic time-delay systems via delay feedback controller, in IEEE 5th International Conference on Bio-inspired Computing: Theories and Applications (2010), pp. 16–20 Google Scholar
  4. 4.
    B. Chen, W. Zhang, Stochastic H 2/H control with state-dependent noise. IEEE Trans. Autom. Control 49(1), 45–57 (2004) CrossRefGoogle Scholar
  5. 5.
    Y. Chen, W. Zheng, On stability of switched time-delay systems subject to nonlinear stochastic perturbations, in Proceedings of 49th IEEE Conference on Decision and Control (2010), pp. 2644–2649 CrossRefGoogle Scholar
  6. 6.
    Y. Chen, W. Zheng, A. Xue, A new result on stability analysis for stochastic neutral systems. Automatica 46(12), 2100–2104 (2010) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S. Cong, S.M. Fei, T. Li, Exponential stability analysis for the switched system with time delay: multiple Lyapunov functions approach. Acta Automatica Sin. 33(9), 985–988 (2007) MathSciNetGoogle Scholar
  8. 8.
    M.C.F. Donkers, W.P.M.H. Heemels, N.V.D. Wouw, L. Hetel, Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9), 2101–2115 (2011) CrossRefGoogle Scholar
  9. 9.
    D. Du, B. Jiang, P. Shi, S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach. IEEE Trans. Autom. Control 52(8), 1520–1525 (2007) MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Du, B. Jiang, P. Shi, S. Zhou, Robust l 2l control for uncertain discrete-time switched systems with delays. Circuits Syst. Signal Process. 25(6), 729–744 (2006) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    D. Du, B. Jiang, S. Zhou, Delay-dependent robust stabilization of uncertain discrete-time switched systems with time-varying state delay. Int. J. Syst. Sci. 39(3), 305–313 (2008) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    W. Feng, J. Tian, P. Zhao, Stability analysis of switched stochastic systems. Automatica 47(1), 148–157 (2011) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, in Proceedings of the 38th IEEE Conference on Decision and Control (1999), pp. 2655–2660 Google Scholar
  14. 14.
    L. Huang, X. Mao, Delay-dependent exponential stability of neutral stochastic delay systems. IEEE Trans. Autom. Control 54(1), 147–152 (2009) MathSciNetCrossRefGoogle Scholar
  15. 15.
    T.C. Lee, Z. Jiang, Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots. IEEE Trans. Autom. Control 53(5), 1235–1252 (2008) MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Li, J. Zhao, G.M. Dimirovski, Robust H control for a class of switched non-linear systems with neutral uncertainties. Trans. Inst. Meas. Control 32(6), 635–659 (2010) CrossRefGoogle Scholar
  17. 17.
    X. Lin, H. Du, S. Li, Finite-time boundedness and L 2-gain analysis for switched delay systems with norm-bounded disturbance. Appl. Math. Comput. 217(12), 5982–5993 (2011) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    P. Liu, Stability criterion of neutral time-varying delay systems. ICIC Express Lett. 4(4), 1367–1372 (2010) Google Scholar
  19. 19.
    J. Liu, X. Liu, W. Xie, Exponential stability of switched stochastic delay systems with non-linear uncertainties. Int. J. Syst. Sci. 40(6), 637–648 (2009) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Q. Luo, X. Mao, Y. Shen, New criteria on exponential stability of neutral stochastic differential delay equations. Syst. Control Lett. 55(10), 826–834 (2005) MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Muralisankar, N. Gopalakrishnan, P. Balasubramaniam, Robust exponential stability criteria for T-S fuzzy stochastic delayed neural networks of neutral type. Circuits Syst. Signal Process. 30(6), 1617–1641 (2011) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    K. Narendra, J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Autom. Control 39(12), 2469–2471 (1994) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    S.K. Nguang, P. Shi, Fuzzy H output feedback control of nonlinear systems under sampled measurements. Automatica 39(12), 2169–2174 (2003) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    S.K. Nguang, P. Shi, H fuzzy output feedback control design for nonlinear systems: an LMI approach. IEEE Trans. Fuzzy Syst. 11(3), 331–340 (2003) CrossRefGoogle Scholar
  25. 25.
    J. Qiu, H. He, P. Shi, Robust H stochastic stabilization and control for neutral stochastic systems with distributed delays. Circuits Syst. Signal Process. 30(2), 287–301 (2011) MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    J. Samuels, On the mean square stability of random linear systems. IRE Trans. Circuit Theory 6(5), 248–259 (1959) Google Scholar
  27. 27.
    X. Su, P. Shi, L. Wu, Y. Song, A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. (2012). doi:10.1109/TFUZZ.2012.2196522 Google Scholar
  28. 28.
    X. Sun, J. Zhao, B. Chen, Robust H reliable control for a class of nonlinear uncertain neutral delay systems. J. Control Theory Appl. 2(3), 222–228 (2004) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    X. Sun, J. Zhao, D.J. Hill, Stability and L 2-gain analysis for switched systems: a delay-dependent method. Automatica 42(10), 1769–1774 (2006) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Z. Tai, X. Wang, Real stability radius of nonlinear neutral systems with multiple delays. ICIC Express Lett. 4(1), 121–124 (2010) MathSciNetGoogle Scholar
  31. 31.
    L. Wu, D.W.C. Ho, J. Lam, H model reduction for continuous-time switched stochastic hybrid systems. Int. J. Syst. Sci. 40(12), 1241–1251 (2009) MathSciNetCrossRefGoogle Scholar
  32. 32.
    L. Wu, X. Su, P. Shi, J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework. IEEE Trans. Fuzzy Syst. 19(2), 366–378 (2011) CrossRefGoogle Scholar
  33. 33.
    L. Wu, X. Su, P. Shi, J. Qiu, A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(1), 273–286 (2011) CrossRefGoogle Scholar
  34. 34.
    Z. Xiang, C. Qiao, R. Wang, Robust H reliable control of uncertain stochastic switched non-linear systems. Int. J. Adv. Mechatron. Syst. 3(2), 98–108 (2011) CrossRefGoogle Scholar
  35. 35.
    Z. Xiang, Y.N. Sun, Q. Chen, Robust reliable stabilization of uncertain switched neutral systems with delayed switching. Appl. Math. Comput. 217(23), 9835–9844 (2011) MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Z. Xiang, R. Wang, Q. Chen, Robust reliable stabilization of stochastic switched nonlinear systems under asynchronous switching. Appl. Math. Comput. 217(19), 7725–7736 (2011) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    D. Xie, Y. Wu, Stabilisation of time-delay switched systems with constrained switching signals and its applications in networked control systems. IET Control Theory Appl. 4(10), 2120–2128 (2010) MathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Xu, T. Chen, Robust H control for uncertain stochastic systems with state delay. IEEE Trans. Autom. Control 47(12), 2089–2094 (2002) CrossRefGoogle Scholar
  39. 39.
    S. Xu, T. Chen, H feedback control for uncertain stochastic systems with time-varying delays. Automatica 40(12), 2091–2098 (2004) MathSciNetMATHGoogle Scholar
  40. 40.
    S. Xu, J. Lam, On H filtering for a class of uncertain nonlinear neutral systems. Circuits Syst. Signal Process. 23(3), 215–230 (2004) MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    S. Xu, P. Shi, Y. Chu, Y. Zou, Robust stochastic stabilization and H control of uncertain neutral stochastic time-delay systems. J. Math. Anal. Appl. 314(1), 1–16 (2006) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    K.W. Yu, Further results on new stability analysis for uncertain neutral systems with time-varying delay. Int. J. Innov. Comput., Inf. Control 6(3A), 1133–1140 (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Guoxin Chen
    • 1
  • Zhengrong Xiang
    • 1
  • Magdi S. Mahmoud
    • 2
  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Systems Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations