Circuits, Systems, and Signal Processing

, Volume 32, Issue 1, pp 143–166 | Cite as

Paired Bernoulli Circular Spreading: Attaining the BER Lower Bound in a CSK Setting

Article

Abstract

This paper is concerned with the Paired Bernoulli Circular Spreading (PBCS), a way of generating optimal spreading for the single-user coherent chaos shift-keying (CSK) system. PBCS is optimal spreading in the sense that it attains the Bit Error Rate (BER) lower bound of the system, therefore it has a potential engineering impact on the choice of signal carrier in CSK communications. PBCS optimality is justified theoretically and is further demonstrated through BER simulations. The statistical properties of PBCS are of interest too, as it is an invariant stochastic process with a mixed joint density which allows to sample infinitely many points from a circle.

Keywords

Optimal spreading Bit error rate (BER) CSK communications 

References

  1. 1.
    M. Hasler, T. Schimming, Optimal and suboptimal chaos receivers. Proc. IEEE 90(5), 733–746 (2002) CrossRefGoogle Scholar
  2. 2.
    G. Kaddoum, P. Charge, D. Roviras, A generalized methodology for bit-error-rate prediction in correlation-based communication schemes using chaos. IEEE Commun. Lett. 13(8), 567–569 (2009). doi: 10.1007/s00034-012-9455-5 CrossRefGoogle Scholar
  3. 3.
    G. Kaddoum, P. Chargé, D. Roviras, D. Fournier-Prunaret, A methodology for bit error rate prediction in chaos-based communication systems. Circuits Syst. Signal Process. 28, 925–944 (2009). doi: 10.1007/s00034-009-9124-5 MATHCrossRefGoogle Scholar
  4. 4.
    G. Kolumbán, Theoretical noise performance of correlator-based chaotic communications schemes. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(12), 1692–1701 (2000) MATHCrossRefGoogle Scholar
  5. 5.
    F.C.M. Lau, C.K. Tse, Optimum correlator-type receiver design for CSK communication systems. Int. J. Bifurc. Chaos 12(5), 1029–1038 (2002) CrossRefGoogle Scholar
  6. 6.
    F.C.M. Lau, C.K. Tse, Approximate-optimal detector for chaos communication systems. Int. J. Bifurc. Chaos 13(5), 1329–1335 (2003) MATHCrossRefGoogle Scholar
  7. 7.
    A.J. Lawrance, N. Balakrishna, Statistical aspects of chaotic maps with negative dependence in a communications setting. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63(4), 843–853 (2001) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A.J. Lawrance, G. Ohama, Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Trans. Circuits Syst. 50(11), 1391–1400 (2003) MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.J. Lawrance, G. Ohama, Bit error probability and bit outage rate in chaos communication. Circuits Syst. Signal Process. 24(5), 519–534 (2005) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    A.J. Lawrance, T. Papamarkou, Higher order dependency of chaotic maps, in 2006 International Symposium on Nonlinear Theory and its Applications (NOLTA) (IEICE, Bologna, 2006), pp. 695–698. Google Scholar
  11. 11.
    A.J. Lawrance, J. Yao, Likelihood-based demodulation in multi-user chaos shift keying communication. Circuits Syst. Signal Process. 27(6), 847–864 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    T. Papamarkou, Two aspects of optimum CSK communication: spreading and decoding, in Chaos 2009, The 2nd Chaotic Modeling and Simulation International Conference, Chania, Greece (2009) Google Scholar
  13. 13.
    T. Papamarkou, A.J. Lawrance, On Monte Carlo maximum likelihood decoding in CSK communications. Submitted for journal publication Google Scholar
  14. 14.
    T. Papamarkou, A.J. Lawrance, Optimal spreading sequences for chaos-based communication systems, in 2007 International Symposium on Nonlinear Theory and its Applications (NOLTA) (IEICE, Vancouver, 2007), pp. 208–211 Google Scholar
  15. 15.
    J. Yao, Optimal chaos shift keying communications with correlation decoding, in Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS, vol. 4 (2004), pp. 593–596 Google Scholar
  16. 16.
    J. Yao, A.J. Lawrance, Bit error rate calculation for multi-user coherent chaos-shift-keying communication systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(9), 2280–2291 (2004) Google Scholar
  17. 17.
    J. Yao, A.J. Lawrance, Approximate optimal demodulation for multi-user binary coherent chaos-shift-keying communication systems, in ISCAS, vol. 3 (2005), pp. 2052–2055 Google Scholar
  18. 18.
    J. Yao, A.J. Lawrance, Performance analysis and optimization of multi-user differential chaos-shift keying communication systems. IEEE Trans. Circuits Syst. 53(9), 2075–2091 (2006) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of WarwickCoventryUK

Personalised recommendations